Rola programu komputerowego CABRI w rozwiązywaniu matematycznych problemów
Abstrakt
CABRI is a didactic program which has won a very stable position and is probably the most popular one in teaching mathematics. The program is constructed in such a way that it not only accepts and carries out tasks but it emits and stimulates certain behaviors itself, communicating them to the user. Program CABRI, using automatic means, allows undertaking activities corresponding to the so - called Platonian geometric constructions which are usually made with a pair of compasses and a ruler. It is used mostly for experimenting within the area of classical Euclidean geometry. Moreover, it also offers various other possibilities and might be used outside geometry. The essential role of CABRI, most frequently used in teaching at school, is using it to solve various tasks and problems - mainly in geometry. We often think what a student can do when his/ her attempts to solve a particular problem are not effective. Is, in such cases, a computer program capable of helping him/her solve a mathematical problem? Working with CABRI, a student very quickly arrives at the right solution. That means that he/she finds the answer to the questions he/she asked himself/herself - the degree of certainty of the result the student achieves is high. He/she also becomes convinced that the answer is correct. A student's task in such a situation is to find theoretical grounds for the facts he/she has discovered.Downloads
Bibliografia
Bell, A. W.: 1993, Some experiments in diagnistic teaching, Educational Studies in Mathematics 24, 115-137.
Bellemain, F., Capponi, B.: 1992, Specificities od the Organization of a Teaching Sequence Using the Computer, Educational Studies in Mathematics 23, 59-97.
Biehler, R.: 1992, Entwicklungen bei didaktischorienterten Softwarewerkzeugen zur Geometrie, Zentralblatt für Didaktik der Mathematik 4, 121-127.
Davis, P., Hersh, R.: 1981, The Mathematical Experience, Birkhäuser, Boston.
Duda, R.: 1982, O nowej roli komputerów w matematyce, Wiadomości Matematyczne XXIV(1), 47-55.
Hölzl, R.: 1996, New trends in the teaching and learning of mathematics, Zentralblatt für Didaktik der Mathematik 3, 93-96.
Kąkol, H.: 1991, Problemowe nauczanie matematyki a komputer, Matematyka 2, 85-92.
Kąkol, H., Ratusiński, T.: 2004, Rola komputera w procesie rozwiązywania zadań matematycznych, Roczniki Polskiego Towarzystwa Matematycznego, Seria V, Dydaktyka Matematyki 26, 119-138.
Konior, J.: 2002a, Repetytorium z CABRI, część I, Matematyka i Komputery 10, 4-6.
Konior, J.: 2002b, Repetytorium z CABRI, część II, Matematyka i Komputery 11, 5-8.
Konior, J.: 2002c, Repetytorium z CABRI, część III, Matematyka i Komputery 12, 5-8.
Konior, J.: 2003, Repetytorium z CABRI, część IV, Matematyka i Komputery 14, 4-9.
Krygowska, Z.: 1977a, Zarys dydaktyki matematyki, cz. 1, WSiP, Warszawa.
Krygowska, Z.: 1977b, Zarys dydaktyki matematyki, cz. 2, WSiP, Warszawa.
Krygowska, Z.: 1977c, Zarys dydaktyki matematyki, cz. 3, WSiP, Warszawa.
Kutzler, B.: 1999, The algebraic calculator as a pedagogical tool for teaching mathematics, http://b.kutzler.com/bk/a-pt/ped-tool.html#scaffolding .
Laborde, C.: 1992, Solving problems in computer based geometry environments: The influence of the features of the software, Zentralblatt für Didaktik der Mathematik 4, 128-135.
Pabich, B.: 1993, Odkrywanie twierdzeń, Nauczyciele i Matematyka 6, 20-21.
Pająk, J.: 2002, Odkrywanie twierdzenia Talesa wspomagane programem CABRI, Matematyka i Komputery 9, 9-11.
Pająk, W., Turnau, S.: 1993, Jak CABRI pomógł w rozwiązaniu pewnego zadania olimpijskiego, Nauczyciele i Matematyka 5, 22-24.
Polya, G.: 1975, Odkrycie matematyczne, Wydawnictwo Naukowo-Techniczne, Warszawa.
Polya, G.: 1993, Jak to rozwiązać?, PWN, Warszawa.
Prus-Wiśniowska, E.: 1995, Dowód matematyczny i jego rola w dydaktyce matematyki: przegląd literatury współczesnej, Roczniki Polskiego Towarzystwa Matematycznego, Seria V, Dydaktyka Matematyki 17, 167-186.
Schoenfeld, A. H.: 1982, Measures of problem – solving performance and of problem – solving instruction, Journal for Research in Mathematics Education 13(1), 31-49.
Semadeni, Z.: 1982, Uwagi do artykułu R. Dudy, Wiadomości Matematyczne XXIV(1), 56-57.
Serafin, S., Treliński, G.: 1976, Zbiór zadań z matematyki elementarnej – geometria, PWN, Warszawa.
Sierpińska, A., Dreyfus, T., Hillel, J.: 1999, Evaluation a teaching design in linear algebra the case of linear transformations, Recherches en Didactique des Mathematiques 19(1), 7-40.
Turnau, S.: 1993, O zadaniu olimpijskim raz jeszcze, Nauczyciele i Matematyka 6, 24-25.
Turnau, S.: 1994, CABRI i geometria elementarna, Matematyka 4, 212-219.
Turnau, S.: 2001, O dowodzeniu twierdzeń we współczesnej szkole, Roczniki Polskiego Towarzystwa Matematycznego, Seria V, Dydaktyka Matematyki 23, 25-32.
Vadcard, L.: 1999, La validation en geometrie au college avec CABRI – geometre, PETIT X 50, 5-19.
Weth, T.: 2000, Computerunterstützung offener Aufgabenstellungen im Geometrieunterricht, Zentralblatt für Didaktik der Mathematik 6, 166-174.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Read the full statement of the license to publish PDF file.