Prime counting function π

Autor

  • Jan Górowski Instytut Matematyki, Uniwersytet Pedagogiczny w Krakowie
  • Adam Łomnicki Instytut Matematyki, Uniwersytet Pedagogiczny w Krakowie

Słowa kluczowe:

prime number, prime counting function, congruence

Abstrakt

The aim of this paper is to derive new explicit formulas for thefunction π, where π(x) denotes the number of primes not exceeding x. Some justifications and generalisations of the formulas obtained by Willans (1964),Minac (1991) and Kaddoura and Abdul-Nabi (2012) are also obtained.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Bibliografia

Górowski, J., Łomnicki, A.: 2013, Around the Wilson’s theorem, Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia V, 51-56.

Kaddoura, J., Abdul-Nabi, S.: 2012, On formula to compute primes and the n th prime, Applied Math. Sciences 6(76), 3751-3757.

Lagarias, J. C., Miller, V. S., Odlyzko, A. M.: 1985, Computing π(x): the Meissel-Lehmer method, Math. Comp. 44(170), 537-560.

Oliveira e Silva, T.: 2006, Computing π(x): the combinatorial method, Revista do Detua 4(6), 759-768.

Ribenboim, P.: 1991, The little book of big primes, Springer Verlag, New York.

Sierpiński, W.: 1962, Co wiemy a czego nie wiemy o liczbach pierwszych, PZWS, Warszawa.

Willans, C. P.: 1964, On formulae for the n-th prime, Math. Gaz. 48, 413-415.

Opublikowane

2017-07-05

Jak cytować

Górowski, J., & Łomnicki, A. (2017). Prime counting function π. Annales Universitatis Paedagogicae Cracoviensis | Studia Ad Didacticam Mathematicae Pertinentia, 5, 71–76. Pobrano z https://didacticammath.uken.krakow.pl/article/view/3671

Numer

Dział

Artykuły