Prime counting function π
Słowa kluczowe:
prime number, prime counting function, congruenceAbstrakt
The aim of this paper is to derive new explicit formulas for thefunction π, where π(x) denotes the number of primes not exceeding x. Some justifications and generalisations of the formulas obtained by Willans (1964),Minac (1991) and Kaddoura and Abdul-Nabi (2012) are also obtained.Downloads
Metrics
Bibliografia
Górowski, J., Łomnicki, A.: 2013, Around the Wilson’s theorem, Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia V, 51-56.
Kaddoura, J., Abdul-Nabi, S.: 2012, On formula to compute primes and the n th prime, Applied Math. Sciences 6(76), 3751-3757.
Lagarias, J. C., Miller, V. S., Odlyzko, A. M.: 1985, Computing π(x): the Meissel-Lehmer method, Math. Comp. 44(170), 537-560.
Oliveira e Silva, T.: 2006, Computing π(x): the combinatorial method, Revista do Detua 4(6), 759-768.
Ribenboim, P.: 1991, The little book of big primes, Springer Verlag, New York.
Sierpiński, W.: 1962, Co wiemy a czego nie wiemy o liczbach pierwszych, PZWS, Warszawa.
Willans, C. P.: 1964, On formulae for the n-th prime, Math. Gaz. 48, 413-415.
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Read the full statement of the license to publish PDF file.