Euclid’s theory of proportion revised
DOI:
https://doi.org/10.24917/20809751.11.3Abstract
Teoria pola po raz pierwszy została opisana w pracy Chou, Gao, Zhang w 1994 roku. W kolejnej pracy (Janicic, Narboux, Quaresma 2012) zaprezentowano nowy system aksjomatów teorii pola i program przeznaczony do automatycznego dowodzenia twierdzen. W artykule chcemy przedstawić interpretację teorii pola w geometrii analitycznej na płaszczyznie kartezjanskiej R×R z porządkiem leksykograficznym. Również pokażemy nową metodę dowodzenia twierdzeń geometrycznych (szczególnie twierdzeń z ksiegi VI Elementów Euklidesa), w której pole trójkąta wystepuje w dowodach (szczególnie w proporcji) jako element pierwotny (wzór na pole trójkąta wprowadza się, jako aksjomat). Podobną metodę stosował Euklides na objektach geometrycznych bez użycia liczb. W omawianej teorii pole trójkąta jest liczbą, a twierdzenie VI.1 Elementów, podstawowe dla teorii Euklidesa, jest przyjmowane jako aksjomat. W artykule również omówimy mało znaną własność, która jest modyfikacją twierdzenia VI.1: w miejsce proporcji trójkątów o wspólnej wysokości, wykorzystuje proporcje trójkątów o wspólnej podstawie.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Read the full statement of the license to publish PDF file.
(see English version) (see Polish version)