Quasi-arithmetic means
Keywords:
Quasi-arithmetic means, inequalities involving means, extended mean values, means in geometryAbstract
We present a list of geometric problems with solutions that lead to knownor less known means. We also prove, by elementary means, some property for so-calledquasi-arithmetic means. We use the proved result to justify some inequalities betweenthe means.Downloads
Metrics
References
Aczél, J.: 1948, On mean values, Bull. Amer. Math. Soc. 54(4), 392-400.
Aczel, J., Dhombres, J.: 1989, Functional equation in several variables, Vol. 31, Cambridge Univ. Press, Cambridge-New York-Rochelle-Melbourne-Sydney.
Galwani, L.: 1927, Dei limiti a cui tendono alcune media, Boll. Un. Math. Ital. 6, 173-179.
Głazowska, D., Jarczyk, W., Matkowski, J.: 2002, Arithmetic mean as a linear combination of two quasi-arithmetic means, Publ. Math. Debrecen 61, 455-467.
Górowski, J., Łomnicki, A.: 2010, O srednich, Ann. Univ. Paed. Cracov. Studia ad Didacticam Math. Pertinentia 3, 55-66.
Kitagawa, T.: 1934, On some class of weighted means, Proc. Phys.-Math. Soc. Japan 16(3rd series), 117-126.
Kołgomorov, A.: 1930, Sur la notion de la moyenne, Alti Accad. Naz. Lincei 12(6), 388-391.
Leach, E., Sholander, M.: 1978, Extended mean values, Amer. Math. Monthly 85, 84-90.
Leach, E., Sholander, M.: 1983, Extended mean values ii, J. Math. Appl. 92, 207-223.
Witkowski, A.: 2009, Comparison theorem for two-parameter means, Math. Inequal. Appl. 12, 11-20.
Downloads
Published
How to Cite
Issue
Section
License
Read the full statement of the license to publish PDF file.
(see English version) (see Polish version)