Prime counting function π
Keywords:
prime number, prime counting function, congruenceAbstract
The aim of this paper is to derive new explicit formulas for thefunction π, where π(x) denotes the number of primes not exceeding x. Some justifications and generalisations of the formulas obtained by Willans (1964),Minac (1991) and Kaddoura and Abdul-Nabi (2012) are also obtained.Downloads
Metrics
References
Górowski, J., Łomnicki, A.: 2013, Around the Wilson’s theorem, Annales Universitatis Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia V, 51-56.
Kaddoura, J., Abdul-Nabi, S.: 2012, On formula to compute primes and the n th prime, Applied Math. Sciences 6(76), 3751-3757.
Lagarias, J. C., Miller, V. S., Odlyzko, A. M.: 1985, Computing π(x): the Meissel-Lehmer method, Math. Comp. 44(170), 537-560.
Oliveira e Silva, T.: 2006, Computing π(x): the combinatorial method, Revista do Detua 4(6), 759-768.
Ribenboim, P.: 1991, The little book of big primes, Springer Verlag, New York.
Sierpiński, W.: 1962, Co wiemy a czego nie wiemy o liczbach pierwszych, PZWS, Warszawa.
Willans, C. P.: 1964, On formulae for the n-th prime, Math. Gaz. 48, 413-415.
Downloads
Published
How to Cite
Issue
Section
License
Read the full statement of the license to publish PDF file.
(see English version) (see Polish version)