Iterations of homographic functions and recurrence equations involving a homographic function
Keywords:
Iterations of homographic functions, recurrence equation, periodic sequencesAbstract
The formulas for the m-th iterate $(m \in N)$ of an arbitrary homographicfunction H are determined and the necessary and sufficient conditions for a solution ofthe equation $y_{m+1} = H(y_m)$, $m \in N$ to be an infinite n-periodic sequence are given. Based on the results from this paper one can easily determine some particular solutionsof the Babbage functional equationDownloads
Download data is not yet available.
Metrics
Metrics Loading ...
References
Graham, R. L., Knuth, D. E., Patashnik, O.: 2002, Matematyka konkretna, PWN, Warszawa.
Koźniewska, J.: 1972, Równania rekurencyjne, PWN, Warszawa.
Kuczma, M.: 1968, Functional Equations in a Single Variable, Monogr. Math. 46, PWN Polish Scientific Publishers, Warszawa.
Levy, H., Lessman, F.: 1966, Równania różnicowe skończone, PWN, Warszawa.
Uss, P.: 1966, Rekurencyjność inaczej, Gradient 2, 102-106.
Wachniccy, K. E.: 1966, O ciągach rekurencyjnych określonych funkcją homograficzną, Gradient 5, 275-288.
Downloads
Published
2017-07-04
How to Cite
Górowski, J., & Łomnicki, A. (2017). Iterations of homographic functions and recurrence equations involving a homographic function. Annales Universitatis Paedagogicae Cracoviensis | Studia Ad Didacticam Mathematicae Pertinentia, 7, 27–33. Retrieved from https://didacticammath.uken.krakow.pl/article/view/3625
Issue
Section
Contents
License
Read the full statement of the license to publish PDF file.
(see English version) (see Polish version)