Continuity axiom in Bolzano’s memoir Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwei Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege

Authors

  • Marlena Fila Institute of Mathematics, Pedagogical University of Cracow, Poland

Keywords:

Bernard Bolzano, Rein analytischer Beweis, continuity axiom, Archimedean axiom

Abstract

Bernard Bolzano’s paper Rein analytischer Beweis des Lehrsatzes, dass zwischen jezwei Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelleWurzel der Gleichung liege was published in 1817. It presents a ”purely analytic proof” of the intermediate value theorem for the polynomials of variable x. Aside from polynomials, Bolzano considers other kinds of functions, however the domain of these functions is not clearly defined. In this article, we show that the variable x ranges over real numbers. Specifically, we identify the axioms for the ordered field that Bolzano implicitly applies. We also identify the versions of continuity axiom, and show that while some of them are implicitly applied, others are explicitly stated as ”basics truths”.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Artin, E., Schreier, O.: 2007, Algebraische Konstruktion reeller Körper, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität 5 (1926), 85–99; The algebraic construction of real fields, w: M. Rosen (red.), Exposition by Emil Artin, AMS-LMS, 107–118.

Błaszczyk, P.: 2012, O ciałach uporządkowanych, Annales Academiae Paedagogicae Cracoviensis. Studia ad Didacticam Mathematicae Pertinentia 4, 15–30.

Błaszczyk, P.: 2016, A purely algebraic proof of the Fundamental Theorem of Algebra, Annales Universitatis Paedagogicae Cracoviensis Studia ad Didacticam Mathematicae Pertinentia 8, 6–22.

Bolzano, B.: 1817, Rein analytischer Beweis des Lehrsatzes, daß zwischen je zwei Werthen, die ein entgegengesetzes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege, Gottlieb Hasse, Praga.

Bolzano, B.: 2004, Purely analytic proof of the theorem that between any two values which give results of opposite signs, there lies at least one real root of the equation, w: S. Russ (red.), The Mathematical Works of Bernard Bolzano, Oxford University Press, Oxford, 251–263.

Cohen, L. W., Ehrlich, G.: 1963, The Structure of the Real Number System, Van Nostrand Co., Princeton, New Jersey.

Dadaczynski, J.: 2006, Bernard Bolzano i idea logicyzmu, Biblos, Tarnów.

Freudenthal, H.: 1971, Did Cauchy Plagiarize Bolzano?, Archive for the History of Exact Science 7(5), 375–392.

Grabiner, J.: 1984, Cauchy and Bolzano. Tradition and transformation in the history of mathematics, w: E. Mendelsohn (red.), Transformation and Tradition in the Sciences. Essays in Honor of I. Bernhard Cohen, Cambridge University Press, Cambridge, 105–124.

Grattan-Guiness, I.: 1970, Bolzano, Cauchy and the ”New Analysis” of the Early Nineteenth Century, Archive for History of exact sciences 6, 372–400.

Teismann, H.: 2013, Toward a More Complete List of Completeness Axioms, The American Mathematical Monthly 120(2), 99–114.

Published

2018-07-01

How to Cite

Fila, M. (2018). Continuity axiom in Bolzano’s memoir Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwei Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege. Annales Universitatis Paedagogicae Cracoviensis | Studia Ad Didacticam Mathematicae Pertinentia, 9(1), 37–48. Retrieved from https://didacticammath.uken.krakow.pl/article/view/4324

Issue

Section

Contents