Tożsamości dla uogólnionych symboli Newtona

Authors

  • Jan Górowski Instytut Matematyki, Uniwersytet Pedagogiczny w Krakowie
  • Adam Łomnicki Instytut Matematyki, Uniwersytet Pedagogiczny w Krakowie

Abstract

--

Downloads

Download data is not yet available.

References

Belbachir, H., Bouroubi, S., Khelladi, A.: 2008, Connection between ordinary multinominals, fibonacci numbers, bell polynominals and discrete uniform distribution, Annales Math. et Informaticae 35, 21-30.

Bollinger, R. C.: 1986, A note on Pascal T-triangles multinominal coefficients and Pascal Pyramids, The Fibonacci Quartely 24(2), 140-144.

Comtet, L.: 1974, Advanced combinatorics, D. Reidel Publishing Company, Dordrecht - Holand, Boston - USA.

Graham, R. L., Knuth, D. E., Patashnik, O.: 2002, Matematyka konkretna, PWN, Warszawa.

Hoggatt, V. E., Bicknel, M.: 1973, Generalized Fibonacci polynominals, The Fibonacci Quartely 11, 457-465.

Kallos, G.: 2006, A generalization of pascal triangles using powers of base numbers, Annales Math. Blaise Pascal 13(1), 1-15.

Koshy, T.: 2001, Fibonacci and Lucas numbers with applications, Iohn Wiley & Sons, Inc.

Philippon, A. N., Georghin, C., Philippon, G. N.: 1983, Fibonacci polynominals of order k, multinominal expansions and probability, Internat. J. Math. Science 6(3), 545-550.

Schork, M.: 2008, The r-generalized Fibonacci numbers and polynominals coefficients, Internat. J. Math. Science 3(24), 1157-1163.

Walser, H.: 2000, The Pascal pyramid, The College Math. J. 31(5), 383-392.

Published

2017-07-26

How to Cite

Górowski, J., & Łomnicki, A. (2017). Tożsamości dla uogólnionych symboli Newtona. Annales Universitatis Paedagogicae Cracoviensis | Studia Ad Didacticam Mathematicae Pertinentia, 3, 67–77. Retrieved from https://didacticammath.uken.krakow.pl/article/view/3765

Issue

Section

Contents