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Abstract. This article shows how technological devices can be integrated
into the use of four selected heuristic strategies by pupils in solving mathe-
matical problem solving: Systematic experimentation, Introduction of an
auxiliary element, Analogy, Solution drawing. Our research examined the
change in the pupils’ success rate and their attitude towards problem solving
as a consequence of being taught the four selected heuristic strategies while
actively using technological devices. A statistically increased success rate of
problem solving and a statistically significant decrease in the frequency of
the number of “no response” cases (the solver does not start to solve the
problem) were expected.

The study was carried out by about 342 pupils in the 13–17 age group in
the Czech Republic. The results of the study show the pupils’ success rate
in the solution of problems effectively solvable using the strategies system-
atic experimentation and solution drawing improved significantly if the use
of these strategies went hand in hand with the active use of technological
devices. The number of “no response” decreased significantly.

1. Introduction

In a technology-based society, where mathematics provides essential knowl-
edge tools, several studies indicate declining interest in key mathematics topics
(e.g. OECD 2006; 2014). The decline in interest is worrying, given that mathe-
matical literacy serves as one of the foundational areas of knowledge that drives
scientific and technological advancement in knowledge-based economies (European
Commission 2010–2013). Research suggests that learning mathematics is critical
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for young children since the early years of schooling are especially important for
children’s development (Sarama, Clements, 2009).

Methods of teaching mathematics mainly in a traditional manner in schools
have been identified as contributing to the falling interest in mathematics learning.
(Yeh et al., 2019; Samuelsson, 2008) “Empirical classroom research over several
decades shows that, with some notable exceptions, mathematics instruction has
been characterized by a traditional, abstract formulation which seems to be readily
understood by only a small fraction of students.” (Mavrou, Meletiou-Mavrotheris,
2014) In some cases, the teaching of mathematics can be viewed as outdated and
unconnected with pupils’ interests and experience. Our experience shows that
ideas are often presented in a theoretical and abstract manner without sufficient
opportunities for pupils to engage in problem solving and experimentation. Now,
as before (e.g. NCTM, 2000), it is true that educational leaders and professional
organizations in mathematics education (NCTM, 2014) have been advocating the
adoption of more active learning environments that would motivate learners and
encourage them through authentic inquiry to establish the relevance and meaning
of mathematical concepts. They have been stressing the fact that the core of school
mathematics should no longer be the teaching of techniques and calculations that
computers can do much faster and more reliably, but the development of problem
solving skills that pupils will need to effectively live and function in a highly
complex society (NCTM, 2014).

The article is a contribution offering one of the possibilities that could increase
the understanding of problem solving by pupils and strengthen their skills in cre-
ative thinking. We believe that this possibility lies in a connection of the following
areas – solving mathematical problems using heuristic strategies with the help of
technology.

Without any doubt, problem solving is the unsubstitutable essence of mathe-
matics as such and is the basic initiator of mathematical development (Pólya,
1973). This fact is reflected in educational systems: problem solving is an integral
part of teaching mathematics in primary and secondary schools. The effort to
integrate suitable problems into mathematics education is reflected in the basic
curricular documents in the Czech Republic (Jeřábek et al., 2013) as well as in
other countries (ACARA, 2015; NCTM, 2000).

School mathematics is based on learning the basic principles and procedures in
mathematics that enable the solution of usual (standard) and expected problems
(Brousseau, Novotná, 2008). However, one can also come across problems that
fall out of this category. These may be real-life problems and purely mathematical
problems, both providing space for the development of pupils in other areas.

The idea of using heuristic approaches in problem solving is far from new.
Specific principles of this approach can already be found in the problems in-
cluded in the Rhind papyrus (Přibyl et al., 2018). In more recent history, this
approach can become visible in the works of philosophers and mathematicians
such as R. Descartes, G. W. Leibniz and his followers or B. Bolzano (Hertwig,
Pachur, 2015). In our opinion, the boom in the perception of heuristic strategies
as a suitable tool for problem solving in mathematics was initiated by the work
of G. Pólya, especially by the first publication of the book How to Solve It? in
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1945. “Pólya’s (1945) procedures consisted of simple rules, such as dividing the
process toward a solution into simple steps by, for instance, finding an analogy to
a problem, finding a more specialized problem, or decomposing and recombining
the problem.” (Hertwig, Pachur, 2015, p. 830)

It was the mathematically gifted students that Polya had in mind, when he
created the idea of modern heuristics. However, in our longitudinal research, we
focused on the use of heuristic strategies by pupils in normal classes, not on mathe-
matically gifted pupils. It turned out that some of these strategies are also suitable
for working with pupils who are below average in mathematics. (Eisenmann et
al., 2015).

In a long-term perspective, we find all positive effects are essential, because
these effects help to change pupils’ attitudes toward mathematics as such (Eysenck,
2001; Eysenck, Keane, 2010). We believe that improving pupils’ ability to solve
problems is one of the most efficient ways to achieve these positive changes in
pupils’ attitudes.

2. Theoretical framework

2.1. Objectives

Similarly, to other areas of our lives, mathematics education is currently
flooded with new technologies, for example, smartphones, tablets, apps, stream-
ing, and cloud storage. It takes a short time for new technologies to enter schools
and mathematics education as well (Jančařík, Novotná, 2011).

New technologies have fast become integral to everyday pupils’ lives, which
means they should be handled in the classroom. As Uzunboylu and Tugun (2016,
p. 83) state:

During the recent years from number of surveys assumed that the use of
technology in the classroom has left positive impact on students, interesting
in learning the desire course, help them learn knowledge and skills, increase
the students’ motivation, and focused on teachers and students a rich edu-
cational environment.

However, we must also draw attention to the fact that their use in teaching
mathematics is not always effective and may not support pupils’ comprehension
of the subject and its concepts (e.g. Jančařík, Novotná, 2011).

The article can be considered as a contribution to this perspective. It focuses
on the use of technologies (computers, laptops, tablets and software) in mathemat-
ics education to improve the pupil’s ability to solve problems. The research was
inspired by the finding that pupils who had access to computers while solving prob-
lems with the use of heuristic strategies used them for their work spontaneously
(Eisenmann et al., 2015). Their use of computers was purposeful, certainly not
“for show” in the sense of (Jančařík, Novotná, 2011).

In the design of our research, we came out primarily of Pólya (1973) and his
definition of heuristic strategies and the model of a solving procedure.

Regarding the model, we decided to use the modified Pólya’s model for the
solving procedure (Pólya, 1973). The solving procedure is considered as divided



[46] Petr Eisenmann, Jarmila Novotná, Jiří Přibyl

into three basic operations: grasping the problem assignment (grasping all data
and relationships necessary for creating a suitable mathematical model and the
model creation); solution of the mathematical model and mathematical verification;
return to the context and contextual verification. In practice, the procedure may
not happen in the presented order, the solver may return to some of the parts
or even skip some of the parts. In the model of pupils’ solving procedures, we
proceed from the assumption that information processing starts with a reading
assignment (Novotná, 2000a; 2000b). Let us state here that in this article, we
focus exclusively on the operation solution of a mathematical model.

The heuristic strategies were originally conceived principally for pupils solving
problems in mathematical Olympiads and other mathematical competitions, where
usually non-routine problems were solved. We had to adapt the concept of heuristic
strategies to our needs (Eisenmann et al., 2015).

We perceive problem solving as a cognitive process that can be carried out in
three ways depending on the solver’s engagement, abilities and skills (see Fig. 1).

Figure 1: Approaches to problem solving

The first approach is referred to as a trial. It is the simplest way of dealing
with the problem, and it is based only on the external motivation of the solver.
The solver does not ask whether he has solved the problem correctly. His only
goal is to “solve the problem”, usually once, without having to check whether the
solution is correct.

The second approach is referred to as a straight way. This way of solving
is based on the application of already learned knowledge. The solver knows the
desired solution procedure, is able to recognize that he should use it in solving the
problem, and applies it.

The third approach is referred to as using a heuristic strategy. The solver
either does not have the required knowledge or does not recognize that the learned
knowledge is relevant to the problem and therefore cannot solve the problem with
straight way. However, the solver is intrinsically motivated to solve the problem,
and it is the heuristic strategy that enables him to solve the problem. (Eisenmann
et al., 2015)

Let us note, in the sense of mathematical education, an expected situation is
to master the mathematical content so that pupils can use it successfully in solving
school tasks and practical problems. Solving problems in a straight way is usually
an efficient approach to problem solving. However, in cases where pupils do not
know, or are unable to use, the desired solution method, a heuristic strategy may
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become an efficient solution method. In some cases, it becomes appropriate to use
the heuristic strategy with a technological device.

We perceive the heuristic strategy as a certain approach to solving problems,
and this strategy can be perceived from different angles (e.g. Fan, Zhu, 2007;
Pólya, 1973; Stacey, 1991). Unlike Pólya (1973), in some cases we do not see
heuristic strategies as certain incentives – for example: Go back to definitions,
but as a specific way of solving a problem based on specific steps. Our defini-
tion of a heuristic strategy is based on mathematical content and does not work
with instructions that guide some of the solver’s actions (such as: go back to the
definition (read it again), read carefully, write down the important information
from the task, etc.). Thus, we perceive the heuristic strategy as a problem-solving
procedure that does not rely on a learned algorithm, but requires the student’s
own inventiveness or some insight based on mathematical knowledge. The heuris-
tic strategy is only part of the whole process of solving the problem. The usual
phases as defined by Pólya (1973) – (a) understanding the problem; (b) devising
a plan; (c) carrying out the plan; and (d) looking back – are still present in the
process of solving the problem.

The article discusses four selected heuristic strategies: systematic experimen-
tation, introduction of an auxiliary element, analogy, and solution drawing because
we expected these strategies to have the potential for the use of technological de-
vices within the solving process. Specific reasons for the selection of these are
explained in section 3.3.

The use of technology within problem solving has been described in the lit-
erature (e.g. ACARA, 2015; NCTM, 2000). However, we did not come across
any research that would focus on the use of technology in solving mathematical
problems using heuristic strategies in lower secondary schools. Bu et al. (2011)
have attempted to work on linking heuristic strategies to technology in teaching
mathematics, but their work remained more or less theoretical.

The success of a pupil while solving a problem is undoubtedly affected by their
experience as it has an influence on their attitude to problem solving as such. It
is a generally accepted fact that pupils’ performance in problem solving improves
during repeated encounters with problem-types proportionally to the use of their
previous experience (Eysenck, 2001).

Several researchers are known to be concerned with the attitudes of pupils
towards problem solving (Huang et al., 2015). The impact of positive attitudes
on the process of education is discussed for example by (Villavicencio, Bernardo,
2015), who also take into account the solving of problems and tasks.

We believe that one of the possible ways to improve a pupil’s attitude to
problem solving is to teach them to actively use selected heuristic strategies. Our
belief is supported by the Self-Determination Theory (SDT). There are two key
assumptions of SDT: “The first assumption of self-determination theory is that
people are actively directed toward growth. Gaining mastery over challenges and
taking in new experiences are essential for developing a cohesive sense of self. ...self-
determination theory focuses primarily on internal sources of motivation such as
a need to gain knowledge or independence.” (Cherry, 2021) The improvement
described by SDT is not automatic but requires a permanent subsistence. It
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explains why pupils benefit when teachers support their autonomy (Reeve, 2002).
Reeve claims that pupils benefit from the use of autonomy-supportive teachers’
behaviours. A pupil will not refuse to solve a problem at the beginning even if they
do not know the relevant solving algorithm. Their positive attitude combined with
the above-mentioned heuristic strategies enables a pupil to start experimentation
and gives them a chance not only to start solving the problem but also to solve it
successfully.

It clearly follows from the text above that our study deals with the variables
given in figure 2.

Figure 2: Diagram showing independent (left) and dependent (right) variables of
the entire study

Independent variables include the characteristics of teachers. These were the
basis for the selection of teachers for the study (see section 3).

The authors are not aware of research dealing with the change in pupils’ atti-
tude to problem solving using heuristic strategies with the use of technology.

The purpose of the study is to explore the impact of using technology while
solving problems with the use of heuristic strategies on pupils’ success rate in
problem solving.

2.2. Theoretical background

2.2.1. Technology in mathematics education

The article is a contribution to the important issue of appropriate use of the
potential that technology may offer to education. There are no longer any doubts
about the benefits of using technology.

Electronic technologies – calculators and computers – are essential tools for
teaching, learning, and doing mathematics. They furnish visual images of
mathematical ideas, they facilitate organizing and analyzing data, and they
compute efficiently and accurately. They can support investigation by pupils
in every area of mathematics, including geometry, statistics, algebra, mea-
surement, and number. When technological tools are available, pupils can fo-
cus on decision making, reflection, reasoning, and problem solving. (NCTM
2000, p. 24)

As far as problem solving is concerned, we believe one of the possible benefits
of the use of technology in teaching is that technology eliminates certain technical
difficulties in solving problems, namely, the difficulty connected with performing
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calculations or drawing and constructing objects. This allows the solver to gain
insight into the task or solve it.

The literature offers a wide scope of work that focuses on the use of technology
in mathematics education in general. A comprehensive overview of the possibilities
of using technology in mathematics education is presented by Jezdimirović (2014).

Trouche and Drijvers (2010) examine the use of technology such as clay tablets,
compasses, rulers, books, paper, pencils, and, in present times, calculators and
computers in mathematics education. Although they focus mainly on handheld
technology, their ideas are more broadly valid for all technologies.

Drijvers (2015) focuses on the question of “What is the potential of ICT for
learning and teaching, and which factors are decisive in making it work in the
mathematics classroom?” (p. 1) His conclusion is that“...crucial factors for the
success of digital technology in mathematics education include the design of the
digital tool and corresponding tasks exploiting the tool’s pedagogical potential,
the role of the teacher and the educational context.” (p. 1)

The use of technology in teaching mathematics should not be random and
should be governed by a definite rationale. Jančařík and Novotná (2011) suggest
the following principles:

• The use of computers cannot be autotelic but must be linked to specific
educational content.

• The computing power must be used effectively; the results should be pre-
sented in a comprehensible way.

• The results from the computer should be further interpreted; they should
provide space for follow-up discoveries.

This is valid for computers. We claim that this also holds when using technol-
ogy in general. Pupils’ thinking should be developed, not substituted.

2.2.2. Problem solving, heuristic strategies and technological devices

We share the belief that ICT expands pupils’ skills in solving mathematical
problems (e.g Dirgha, 2017). His research does not focus on heuristic strategies,
but the course of work in the experiments is in accordance with Pólya (1973). What
is important for us is that the teachers’ work in the experiments corresponds in
some aspects (provision and distribution of materials) to the course of work of the
teachers involved in our experiment.

The end of this subsection is devoted to implementing the four discussed strate-
gies in the context of existing literature, and that from the point of view of using
technology in their application.

The use of a spreadsheet precipitates a range of advantages in problem solving
as well (e.g. Marley-Payne, Dituri, 2019). Let us note that Drier (2001) already
points out that MS Excel can be used successfully while solving the so-called
open-ended problems. Chaamwe and Shumba (2016) further advance and state
that “The spreadsheet tool also promotes the development of problem solving skills
and supports ‘What if...’ type questions.” (p. 570)
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The following conclusions based on experiments are presented about the strat-
egy systematic experimentation by Doorman et al. (2013).

• By generating the results of a series of calculations for a variety of input
values, the computer tool strengthened the pupils’ notion of a function as
a calculation procedure that transforms input values into output values.

• By generating output values for a series of input values, by generating tables
of input and output values, and by enabling the pupils to move up and
down the values in these tables, the computer tool supported the pupils
in developing a dynamic notion of a variable that can move in a space of
possible values, and the corresponding idea of co-variation.

The first incentives of solution drawing have been brought by Pólya (1973).
He takes drawing a figure as an encouragement, motivating the pupil to use more
effective problem solving. He demonstrates this in a variety of model situations.
Most frequently, he exploits drawing a picture to illustrate a particular situation,
which enables the pupil to gain insight into the problem or to affirm the direction
of their thought.

Unlike Pólya, we understand “drawing a figure” and especially manipulating
the objects in it as a self-contained heuristic strategy, which we call solution draw-
ing.

Not every drawing counts as a heuristic strategy. The strategy solution draw-
ing bears the characteristics of the above-mentioned manipulation of objects.

Introducing a dynamic geometry system or software in teaching gives pupils
the opportunity to stop concentrating on drawing as such. Pupils do not have to
follow their accuracy but can focus on relations among objects in the task, which
enables them to reach the solution more easily. We agree with Kuzle (2017, p. 38)
that “The interface of a DGS [dynamic geometry software] creates an opportunity
to transform a mathematics classroom into an environment of investigation, in
which pupils engage in predicting, manipulating, observing, conjecturing, testing,
and developing explanations for observed phenomena.”

GeoGebra is an interactive mathematics software for learning and teaching not
only geometry on every level of mathematics education. In this article we focus on
the geometric part of GeoGebra. Basic geometric constructions work with objects
such as points, lines and circles and other objects rises oh these. Some of the basic
constructions are already built into the SW, such as constructing a perpendicular
from a given point to a given line, constructing tangents from a given point to
a given line, and so on. There are even built-in functions that allow you to perform
basic planar transformations such as axial symmetry, homothety, and rotation.
What we must emphasize at this point is that the main advantage of interactive
geometry is that all relationships are preserved when manipulating objects. Iranzo
and Fortuny (2011) studied the general relation of paper-and-pencil skills in the
environment of GeoGebra, with a strong pro-GeoGebra approach, and, among
other things, they indicate: “We have also observed that the use of GeoGebra
fosters a more geometrical thinking in the context of the given tasks.” (p. 102)

There is no doubt about the suitability of introducing GeoGebra in teaching
mathematics and the opportunities it suggests are shown, for example, on the web
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GeoGebra Tube. We focused our research on mathematical problem solving with
heuristic strategies with a little help of dynamic geometry systems. The encour-
agement of the heuristic approach to problem solving through GeoGebra is cited in
(Abdu et al., 2015). In their particular case, the focus has been put on whole-class
scaffolding. Guerrero-Ortiz et al. (2015) say: “We obtained evidence that the use
of a DGS [dynamic geometry system] can enhance the emergence of a wide range
of heuristics, some of which are specifics to this type of environment,. . . ” (p. 294)
The opportunities of GeoGebra in class, corresponding with our research, are to
be found by Koyuncu et al. (2014), as they state: “After solving each problem, the
pupils attempted to find alternative strategies, and they usually found alternative
solutions.” (p. 860).

As far as the introduction of an auxiliary element and analogy are concerned,
the authors of this article are not aware of any research linking the strategies with
technologies. The authors are of the opinion that it is due to two main reasons:
firstly, both strategies are of non-algorithmic character, and their use demands
a certain level of mental involvement on the part of the solver (Přibyl, Eisenmann,
2014), which makes the use of technology in terms of accelerating the computing
more difficult. Secondly, a number of solvers do not recognize the very presence
of the auxiliary element in the graphical depiction of the solution and such a way
remains for them on the level of the solution drawing strategy.

3. Design of the study

The research was designed as a quasi-experiment in the sense of repeated
measures (pre-test and post-test) of one group. The interval between the first and
second measurements was 12 months. The research sample did not change in this
interval.

3.1. Research questions and hypotheses

The following questions were posed at the beginning of our experiment:

RQ1: Will the participating pupils’ success rate in problem solving increase
as a consequence of being taught the four selected heuristic strategies while using
technology actively?

RQ2: Will the number of participating pupils who do not even start solving
the problem decrease as a consequence of being taught the four selected heuristic
strategies while using technology actively?

On the basis of the findings from the second stage of the study and on our
research (Eisenmann et al., 2015), we formulated the following primary and sec-
ondary hypothesis:

Primary hypothesis: There will be a statistically significant increase in the
success rate of problem solving between the pre-test and the post-test due to the
use of heuristic strategies (when using technology actively).

Secondary hypothesis: There will be a statistically significant decline in the
frequency of no response (situation when the pupils do not even start solving the
problem) between the pre-test and the post-test.
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3.2. Discussed heuristic strategies

In this section, we present a brief description of the four heuristic strategies
that were subjects of our study. They are described in more detail in (Eisenmann
et al., 2015; Přibyl, Eisenmann, 2014).

3.2.1. Systematic experimentation

The principle behind the strategy Systematic experimentation (SE) is the idea
that the result may be reached in a finite number of attempts. These attempts are
carried out systematically. Each subsequent attempt will be “slightly” modified
with respect to the previous one. The principle is based on the fact that the
solver selects an initial value and then gradually gets closer to the sought solution.
This strategy seems to be very efficient in connection with the use of technological
devices as these make it possible to conduct the experiments in real-time. Let us
illustrate this strategy with the following problem.

Problem: The numbers that are read the same from left to right and right
to left, for example 452 254, are called palindromes. My friend claims that all
four-digit palindromes are divisible by 11. Is it true?

Solution: Let us now take several four-digit palindromes at random and divide
them by eleven. We will get, for example, the following:

4 554 = 414 × 11
1 001 = 91 × 11
8 338 = 758 × 11

It seems my friend could be right. However, we will not be one hundred
percent sure unless we check all 90 existing four-digit palindromes. This can be
done efficiently using a spreadsheet (see table 1).

Table 1: Solving of the problem – shortened table (the so-called brute force
method) (source: own calculation)

a b “=b2” “=a2” “=1000*A2+100*B2+10*C2+1*D2” “=E2/11”
1 0 0 1 1 001 91
1 1 1 1 1 111 101

. . . . . . . . . . . . . . . . . .
2 9 9 2 2 992 272

. . . . . . . . . . . . . . . . . .
9 1 1 9 9 119 829

. . . . . . . . . . . . . . . . . .
9 9 9 9 9 999 909

The last column shows that all quotients are whole numbers.
Answer: My friend is right.
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3.2.2. Introduction of an auxiliary element

The basic idea of this strategy is that the introduction of an auxiliary element
(IAE) makes the solution much more easily accessible to the solver. We define an
auxiliary element as an object not included in the question of a problem, which
we insert into the problem, hoping it will make the solving procedure easier. In
the case of geometrical problems, it will usually be a straight line, a line segment,
a point, or a figure, in the case of arithmetical or algebraic problems it will be
a number or a function. Let us illustrate this strategy with the following problem.

Problem: Let ABC be an acute-angled triangle. Let us construct such
a square KLMN whose side KL lies on the side AB, vertex M lies on the side
BC, and vertex N on the side AC.

The problem is from (Pólya, 1973).
Solution: Let us now visualize the situation of the problem (see Fig. 3).

Figure 3: Visualization of the problem

Several attempts will make it obvious that we cannot construct such a square.
It is difficult to meet all the three conditions of the assignment – condition (kl):
the side KL lies on the side AB, condition (m): the vertex M lies on the side BC,
and condition (n): the vertex N lies on the side AC.

Let us omit the condition (m). This will allow us to construct a square that
meets the conditions (kl) and (n). This is not so difficult as the origin problem.
The construction done by the software GeoGebra is illustrated in figure 4.

Figure 4: Construction of the square with one omitted condition
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Point K is the variable in the construction. If it is moved along the line
segment AB, a number of different squares will be generated. We can track the
movement of the point M (using the function trace, see Fig. 5).

Figure 5: Track of the movement of the point M

Obviously, if we want to solve the problem, we have to introduce an auxil-
iary element – the line p that goes through points A and M (see Fig. 6). The
intersection point of line p with the side BC is the sought point that meets the
condition (m).

Figure 6: Auxiliary element – line p

Let us now make use of the fact that dynamic geometry software allows us to
hide some objects. The newly created point will be identified as the sought point
M and we can construct the sought square as is shown below (see Fig. 7).

Figure 7: Construction of the square KLMN

Answer: Construction of the square KLMN is described above.
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3.2.3. Analogy

The use of the strategy Analogy (AN) is based on the fact that the solution
of a problem “analogical” to the original problem is simpler. The solver discovers
the way to the solution and then applies the solution procedure to the original
problem. What is important here is that the solver poses this analogical problem
on their own. This is usually done by substituting objects in the problem by
other objects. Some of the qualities of the objects remain intact, but the others
are changed. For example, a sphere is substituted by a circle, large numbers are
substituted by small numbers, and an 8×8 chessboard is substituted by a 3×3
chessboard. Let us illustrate this strategy with the following problem.

Problem: Given are the straight line p and a regular octahedron. Determine
the plane that goes through line p and divides the given octahedron into two parts
of equal volume (see Fig. 8).

Figure 8: Visualization of the problem

Solution: The analogy is based on going one dimension lower. Instead of
a regular octahedron, we will work with a square (the plane projection of the
octahedron) and instead of the straight line, we take a point. We formulate an
analogical problem.

The analogical problem: Given is a square and the point P, which is not
the centre of the square. Determine the line that goes through the point P and
divides the given square into two figures of the same area.

The solution of the analogical problem: We experiment using the software
GeoGebra. If we draw several lines through the point P intersecting the square,
we discover that we get figures of the same area when the line goes through the
centre of the square (see Fig. 9). These polygons are surely congruent, which
proves the equality of the areas of the figures.

Figure 9: Sought line intersecting the centre of a square and the point P
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Answer to the analogical problem: The sought straight line must intersect the
centre of the square.

Answer: The sought plane must go through the centre of the octahedron.

3.2.4. Solution drawing

The graphic method is very often a very efficient way of solving a problem. We
usually visualize the problem using an illustrative drawing – this is quite common,
for example, in the case of geometric constructions in geometry. The drawing
allows us to describe what is given and also what we are looking for. The drawing
we create is called an illustration and is a graphical representation of what is
being solved. Sometimes, it can help us realize how to solve the given problem.
However, we often manipulate with the drawing (e.g. we add the needed auxiliary
elements). This extended drawing often helps us solve the problem. This drawing
will be referred to as the solution drawing (SD). This way of finding a solution
confirms the known proverb that one good drawing saves one thousand words. Let
us illustrate this strategy with the following problem.

Problem: We have a square inscribed in a circle and this circle is inscribed in
another square (see Fig. 10). Determine how much of the larger square is occupied
by the smaller square.

Figure 10: Visualization of the problem

Solution: Adding the diagonals and using a suitable rotation of the smaller
square (see Fig. 11) enables us to solve the problem easily. The square is divided
into four equal parts – smaller squares. Each small square is divided by diagonal
into two equal parts – triangles. Therefore, the inscribed square occupies exactly
one half of the circumscribed square.

Figure 11: Rotation of the smaller square

Answer: The smaller square occupies one half of the larger square.
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3.3. The timeline of the study

The timeline (see Fig. 12) of the study was the following:

1. Training teachers in in-service teaching courses (11 months)

2. Selection of problems (5 months)

3. Sampling (1 month)

4. Pre-test (1 month)

5. Experimental teaching (10 months)

6. Post-test (1 month)

Figure 12: Time line of the study

The goal of the first stage was to train teachers for the following experimental
teaching. In the nine months of in-service teacher training courses, 19 teachers were
introduced to the use of heuristic strategies in problem solving. In total, there were
four two-hour workshops. At this stage, the feedback from the teachers served as
the basis for selection of the four here discussed strategies. These strategies proved
to have the potential of allowing the effective use of technology while solving
problems. Namely, the following expectations emerged in the discussions when
solving tasks with teachers. The SE strategy can be used efficiently only when
a spreadsheet programme such as MS Excel is used. In the case of SD and IAE
strategies, it proved to be useful when creating a solution drawing or finding an
auxiliary element to start with making illustrative drawings at the beginning of
the solution using a dynamic geometry system, for example GeoGebra. For some
problems solved using AN strategy, teachers experimented with GeoGebra 3D and
solved the problem, for example, by reformulating the problem to an analogical
problem by projecting an object into a plane, thus working with one less dimension.

The goal of the second stage was to prepare the appropriate problems for
each of the four selected strategies to be used in experimental teaching. This
stage lasted 5 months. The above-mentioned 19 teachers with their 13–17 year
old pupils piloted the tasks in their classes. From the 30 problems prepared by
us for each of the strategies, the 20 most suitable were selected according to the
following criteria:
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• the solution of the problem using the given strategy is an efficient way, if the
solver cannot solve the problem straight way manner;

• the problem wording is clear to the selected age category of pupils;

• pupils’ skills in the area of technology allow the pupils to use technology;

• a successful solution of the problem takes about 5–10 minutes.

3.4. The participating teachers and pupils

In the third stage, 14 of the above-mentioned 19 teachers were selected for the
experimental teaching. The first criterion for their selection was that they had
at least 5 years of teaching experience and were willing to commit to responsible
cooperation during the experimental teaching. Another criterion was that the
teachers should be able to provide a class for the experimental teaching, that
would meet the following criteria:

• there are 20–26 pupils in the class;

• it is an ordinary class with no specialization;

• the class does not integrate pupils with major learning difficulties;

• the class as a whole may be seen as an average with respect to its performance
and discipline;

• the class was not involved in the second stage of the study, i.e. pupils were
not involved in selection of the most suitable problems.

The assessment of the class for the criterion of performance and discipline
(the fourth criterion) was based on two sources: the grades in mathematics on
the school report and evaluation by the participating teachers. The participating
teachers agreed that according to their experience, the classes were average, there
were no outstanding numbers of either low achieving or high achieving pupils, and
there were no severe disciplinary issues.

Table 2 presents information about the teachers involved in the experimental
teaching.

The selection of teachers meant also the selection of pupils involved in the
experimental teaching. 14 classes with 342 pupils took part in the study:

• 5 classes of 13–14 year old pupils, there were 22, 25, 27, 23 and 22 pupils

• 4 classes of 15–16 year old pupils, there were 26, 25, 24 and 26 pupils

• 5 classes of 16–17 year old pupils, there were 25, 26, 26, 22 and 23 pupils

The age of the pupils given in the previous paragraph is the pupils’ age at the
beginning of the experimental teaching. There were 180 boys and 162 girls (342
pupils in total) in the lower and upper secondary schools in the Czech Republic,
namely, in Prague and Ústí nad Labem. None of the classes integrated physically
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Table 2: Information about the teachers involved in the experimental teaching
(source: own calculation)

Group Sex Age Teaching
experience

(years)
13–14 F 38 10
13–14 F 31 6
13–14 F 40 11
13–14 M 29 5
13–14 M 32 7
15–16 F 50 21
15–16 F 32 8
15–16 F 35 11
15–16 M 59 28
16–17 F 56 27
16–17 F 32 6
16–17 M 33 7
16–17 M 40 15
16–17 M 32 8

or mentally disabled pupils or pupils with low socioeconomic status. All pupils
were of Czech nationality except for two Vietnamese and seven Roma pupils. All
pupils were native speakers of Czech.

Table 3 shows the arithmetic mean of the grade in mathematics on end-of-year
school report and the standard deviations of each age group. Grades in the Czech
Republic are on the scale from 1 to 5, where 1 is the best and 5 is the worst.

Table 3: Arithmetic mean of the grade in mathematics (source: own calculation)
Age

of the
group

The arithmetic
mean of the

grade in
mathematics

The standard
deviation

13–14 2.42 1.08
15–16 2.32 1.07
16–17 2.37 1.10

A certain comparison may be seen in the fact that the arithmetic mean of
grade in mathematics was 2.34 in the 20 selected elementary schools in Prague
and Ústí nad Labem.
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The pupils’ experience and skills in technology were mostly on the level of
ICT curriculum for lower secondary schools in the Czech Republic. To be more
explicit, the pupils were able to work with MS Excel in the extent enabling them
to make simple formulas and use them in additional cells by automatic filling.

The pupils were also able to use GeoGebra, namely, the part that works with
planimetric constructions.

The participating teachers had mastered MS Excel at a good level. They
were also proficient in the use of GeoGebra, not only in the area of planimetric
construction but also in the area of symbolical calculations using CAS. None of
the teachers was an ICT teacher.

3.5. Experimental teaching

Within the frame of the study, the pupils were taught the following four strate-
gies: SE, IAE, AN, SD. As stated above, a set of about 20 problems for each
strategy was prepared for the experimental teaching. The problems related to the
following areas of school mathematics: arithmetic, word problems on movement,
joint work and percentages, elementary and solid geometry, equations, functions.
About three quarters of these problems were suitable for all age categories in-
volved. The rest of the problems could only be used in the group of 16–17 year
old pupils. Each problem was supplemented by a solution using the standard way,
then using the given strategy and also using at least one other heuristic strategy.

The experimental teaching took 10 months in every class, starting in Septem-
ber and finishing in June. During the whole period of the experimental teaching,
the selected heuristic strategies were not taught separately in individual teaching
blocks. The selected problems were included in the current topic taught. On
average, the pupils solved two problems using heuristic strategies each week.

The teachers’ working procedure in the lessons was the following: They pre-
sented the problem to their pupils (mostly in the written form, on a worksheet).
They let them work and for some time (when at least one-half of the pupils had
solved the problem) they asked one pupil to present the solution to the others.
Then they checked the rest of the class, had understood the presented solution,
and invited the pupils to show their (own) solutions if they were different. If the
solution required by the heuristic strategy, which was the goal of setting the prob-
lem, did not appear among the presented solutions, the teacher showed it to the
pupils. The pupils were always encouraged to look for more ways of solving a par-
ticular problem, and to record their solving procedure. In the discussions, they
were asked to justify their solving procedures as we are convinced that this not
only develops pupils’ communication skills but also their ability to solve problems.

A computer, a laptop, or a tablet were available to all pupils in the lessons.
About half of the pupils were sitting in pairs at the computers. In problems
requiring the use of a spreadsheet (especially when using the strategy SE), the
pupils were working with MS Excel, in problems requiring the use of a dynamic
geometry system (SD, IAE and partly also AN) they were using GeoGebra and
in two classrooms the Cabri II Plus. It should be noted here that all the pupils
who participated in the experimental teaching had the opportunity to use a desk
computer or a laptop or a tablet in their home preparation.
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Cooperation with the participating teachers was intense and systematic. The
teacher always collected the pupils’ worksheets with the solutions and evaluated
them. The worksheets, individual problems, strategies used, and the individual
pupils were then discussed in regular meetings with one member of the research
team. Each of the 14 teachers had one partner from the research team. They
cooperated closely for the whole period of the experiment. Members of the research
team had access to the pupils’ worksheets during the whole experiment. The
cooperating members of the research team also went to observe a lesson in the
experimental class once every four months.

3.6. Pre-test and Post-test

Before the start of the experimental teaching, the pupils took the pre-test,
after the experimental teaching was completed, the pupils took a post-test. The
problems in the pre-test and the post-test were identical. The interval between
the first and second measurements was 12 months. The interval was long enough
to eliminate the influence of the pre-test on the post-test. The test did not contain
problems whose uniqueness could have made the pupils remember them.

Each of the three groups of pupils (divided with respect to age) had a different
test corresponding to their knowledge. In all three cases, it was a set of four prob-
lems that were most effectively solvable by one of the four here discussed strategies
using technology. Each problem represented only one of the four strategies dis-
cussed. In all tests, problem 1 corresponded to the strategy SE, problem 2 to the
strategy IAE, problem 3 to the strategy AN and problem 4 to the strategy SD.
These problems were not solved with the pupils during the experimental teaching.

The tests were taken in lessons of mathematics. The teacher was present. Each
pupil was given one sheet of paper with all four problems. There was an empty
space below each problem for the solution. When taking the pre-test/post-test,
computers, laptops or tablets were available to all pupils.

Each teacher was given the following instruction:

• The teacher must not give any advice or explain the assignment.

• Use of any textbook, tables, or collection of formulas is prohibited.

• The pupils must write the solving procedure or record the reasoning that
leads to the result, not just the result.

• If pupils use technology, having solved the problem, they must raise their
hand so that the teacher can come to them, have a look at the monitor, and
put a stamp on the test to confirm that the technology was really used in its
solution.

• The pupils must write a full answer (where needed) or double underline the
result.

• We leave it up to the teacher to ask the pupils to sign or do not sign the
test. The goal is maximum effort on the pupils’ part.

• The pupils have a maximum of 45 minutes for the test.
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In each test task, the pupil had to select an answer Yes/No, indicating whether
they had used a computer, laptop, or tablet while solving the problem. In this
study, the use of a calculator or a similar device is not considered to be the use
of technology. If the computer was used only for calculations as a calculator, the
pupil’s answer to the question was No.

All tasks in the test were analyzed and assessed in detail. Each solution was
coded. The following phenomena were coded:

• way of solving the problem (straight way or heuristic strategy);

• success of problem solving (yes/no);

• no response (the pupil did not even try to solve the problem); and

• use of technology.

The pre-test and post-test comparisons were conducted using McNemars’ test
for homogeneity of the marginal distributions. This test was chosen because in
this case we analyze the dependent dichotomic variables. Software STATISTICA
was used for all statistical evaluations.

In all cases, the studied phenomenon is described by the values solved/did
not solve. The value solved corresponds to a complete required solution of the
problem.

Let us illustrate how the test problem was evaluated. The problem comes from
the test for 13–14 year old pupils.

Problem: Determine two consecutive odd natural numbers whose product is
1023.

Solution: The sought numbers are 31 and 33.
The following correct solutions were used in the tests:

(1) Straight way, algebraic mode:

The first odd number................................2n − 1, where n ∈ N
The second odd number............................2n + 1, where n ∈ N

(2n − 1) · (2n + 1) = 1023
n2 − 256 = 0

For n1 = 16
(2 · 16 − 1) = 31

(2 · 16 + 1) = 33

For n2 = −16
2 · (−16) − 1 = −31

2 · (−16) + 1 = −33

The numbers −31, −33 are negative integers. The only solutions to this
problem are thus numbers 31 and 33.
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(2) Straight way, arithmetical mode I

There is one even number between two consecutive odd numbers.
√

1023 =̇ 32

32 − 1 = 31

32 + 1 = 33

These numbers really work:

31 · 33 = 1023.

(3) Straight way, arithmetical mode II

Let us write number 1023 as a product of prime numbers. The decomposition
makes the solution clear:

1023 = 3 · 11 · 31
1023 = 33 · 31

All these solutions were coded as straight way, successfully.

(4) Systematic experimentation

The following shortened table 4 solves the problem by making a list of all
possibilities (the so-called brute force method).

Table 4: Solving of the problem (the so-called brute force method) (source: own
calculation)

First odd
number

Second odd
number

Product of
numbers

1 3 3
3 5 15
5 7 35

. . . . . . . . .
29 31 899
31 33 1023

This solution was coded as the use of a heuristic strategy, use of technology,
successfully.

To conclude this subsection, let us give by way of illustration the test for the
age category 16–17 years.

1. The numbers that are read the same from left to right and right to left,
e.g. 452 254, are called palindromes. My friend claims that all four-digit
palindromes are divisible by 11. Is it true?
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Figure 13: Visualization of the problem

2. Square CDEF is inscribed into an isosceles triangle ABC (see Fig. 13).
What is the area of the square if line segment AB is 8 cm long?

3. A car covered the distance of 420 km and used up 29 l of petrol. What was
its average petrol consumption per 100 km?

4. The triangle ABC in Figure 14 has unit area. The points P , Q, R, S divide
the sides AC and BC into three equal parts. What is the area of the colored
quadrilateral?

Figure 14: Visualization of the problem

4. Results

This section provides the results received from the analysis of pupils’ written
tests.

4.1. Primary hypothesis

The studied phenomena are the following:

• the success rate in solving the problems;

• the overall success rate in solving the problems using a heuristic strategy;

• the overall success rate when solving the problems in a straight way;

• the overall success rate in solving the problems using technology.



Technological devices in the development of pupils’ expertise in the use ... [65]

Let us note here that the last studied phenomenon is meaningful only when
connected to the use of a heuristic strategy because a solution in a straight way
corresponds to an algorithmic solution presented at school without using technol-
ogy. We can state here that none of the pupils used the technology when solving
the problem in a straight way.

4.1.1. Success rate in solving the problems

In this case, the observed phenomenon takes value from 0 to 342. The first
bound corresponds to the situation when the problem is solved by none of the
pupils. The latter bound corresponds to the situation when all pupils solved it
successfully. Summary table 5 shows the overall success rate in the solution of
the problem (i.e. regardless of whether the problem was solved in a straight way
or using a heuristic strategy), χ2 for McNemars’ test with Yates correction (with
0.01 level of significance) and the corresponding p. Tables 5.1–5.4 show the data
needed for table 5 construction.

Table 5: Overall problem solving success rate (source: own calculation)
Pretest (Number) Posttest (Number) χ2 p

Problem 1 (SE) 139 302 109.8 0.0000
Problem 2 (IAE) 171 205 10.27 0.0013
Problem 3 (AN) 142 201 36.17 0.0000
Problem 4 (SD) 40 177 114.88 0.0000

Table 5.1: Data for the problem 1 (SE) (source: own calculation)
Posttest – successfull Posttest – unsuccessful Total

Pretest – successful 101 38 139
Pretest – unsuccessful 201 2 203
Total 302 40 342

Table 5.2: Data for the problem 2 (IAE) (source: own calculation)
Posttest – successfull Posttest – unsuccessful Total

Pretest – successful 135 36 171
Pretest – unsuccessful 70 101 171
Total 205 137 342
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Table 5.3: Data for the problem 3 (AN) (source: own calculation)
Posttest – successfull Posttest – unsuccessful Total

Pretest – successful 125 17 142
Pretest – unsuccessful 76 124 200
Total 201 141 342

Table 5.4: Data for the problem 4 (SD) (source: own calculation)
Posttest – successfull Posttest – unsuccessful Total

Pretest – successful 28 12 40
Pretest – unsuccessful 149 153 302
Total 177 165 342

We can formulate the corresponding null hypothesis H0 for each problem as
follows: The probability of improvement along with a decline between pre-test and
post-test are equal.

The data in table 5 clearly show that the null hypothesis is rejected in all four
cases. Thus, we can state that for each of the problems, there is a statistically
significant increase in the success rate in problem solving. This fact will now be
explained using the three phenomena mentioned above.

4.1.2. Overall success rate in solving problems using a heuristic strategy

In this case, the observed phenomenon takes value from 0 to 1368. The first
bound corresponds to the situation when none of the 342 pupils was solving any of
the assigned problems using a heuristic strategy, the other describes the situation
when all problems were successfully solved by all pupils by some heuristic strategy.
At the moment, we are watching the phenomenon as a whole, while we are not
dealing with individual pupils or individual problems. Table 6 shows the data
of the solutions using a heuristic strategy. χ2 for McNemars’ test with Yates
correction (with 0.01 level of significance) is 352.07 and the corresponding p is
0.0000.

Table 6: Data of the success rate of solutions of problems using a heuristic strategy
(source: own calculation)

Posttest – successfull Posttest – unsuccessful Total
Pretest – successful 44 2 46
Pretest – unsuccessful 360 962 1322
Total 404 964 1368
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We can formulate the corresponding null hypothesis H0 for the given phe-
nomenon as follows: The probability of improvement along with a decline between
pre-test and post-test is equal.

The data in table 6 clearly show that the null hypothesis must be rejected.
Thus, we can state that the use of heuristic strategies has an impact on a statis-
tically significant increase in the success rate in problem solving.

Table 7 presents the frequencies of use of different strategies and their success.

Table 7: Numbers of occurrence and successfully used heuristic strategies (source:
own calculation)

Pretest Posttest
Occurrence Successfully used Occurrence Successfully used

Problem 1 (SE) 58 27 178 174
Problem 2 (IAE) 80 8 124 67
Problem 3 (AN) 17 5 81 57
Problem 4 (SD) 59 6 191 106

Let us note here that the second (and third) columns in table 7 give sponta-
neous occurrence of heuristic strategies that had been used before actually starting
the experimental teaching. Since the test tasks were selected in such a way that the
selected heuristic strategy should be efficient way to solve them, the spontaneous
occurrence of this way of solving had to be expected.

4.1.3. Overall success rate in solving the problems in a straight way

In this case, the observed phenomenon takes a value from 0 to 1368. The first
bound describes the situation when none of the 342 pupils were solving any of the
assigned problems in a straight way, and the latter bound describes the situation
when all pupils were successfully solving all problems in a straight way. At the
moment, we are watching the phenomenon as a whole, while we are not dealing
with individual pupils or individual problems. Table 8 shows data of success rate in
solving the problems in a straight way, χ2 for McNemars’ test with Yates correction
(with 0.01 level of significance) is 5.09 and the corresponding p is 0.0240.

Table 8: Data of successful solution of problems in a straight way (source: own
calculation)

Posttest – successfull Posttest – unsuccessful Total
Pretest – successful 350 96 446
Pretest – unsuccessful 131 791 922
Total 481 887 1368
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The following null hypothesis H0 can be formulated for this phenomenon: The
probability of improvement along with a decline between pre-test and post-test is
equal.

The data in table 8 do not allow rejection of the null hypothesis.

4.1.4. Overall success rate in solving the problems using technology

The last discussed phenomenon refers to the situation when a pupil was solving
a problem using a heuristic strategy and used the technology while solving it. In
addition, in this case, the studied phenomenon takes a value from 0 to 1368. The
first bound describes the situation when none of the 342 was solving any of the
assigned problems using technology, and the latter refers to the situation when
all pupils were solving all problems using technology. At the moment, we are
watching the phenomenon as a whole, while we are not dealing with individual
pupils or individual problems. Table 9 shows the data for success rate in the
solution using some heuristic strategy and technology, χ2for McNemars’ test with
Yates correction (with 0.01 level of significance) is 233.00 and the corresponding
p is 0.0000.

Table 9: Data of successful solution of problems using technology (when a heuristic
strategy was used) (source: own calculation)

Posttest – successfull Posttest – unsuccessful Total
Pretest – successful 27 235 262
Pretest – unsuccessful 0 1106 1106
Total 27 1341 1368

The following null hypothesis H0 can be formulated for this phenomenon: The
probability of improvement along with a decline between pre-test and post-test is
equal.

The data in table 9 clearly show the null hypothesis must be rejected. Thus,
we can state that the use of technology (when a heuristic strategy is used) has an
impact on a statistically significant increase in the success rate in problem solving.

Let us note here that the increase in the use of technology was most significant
in the case of the strategies SE and SD. Table 10 shows the occurrence of using
technology in relation to different strategies.

Table 10: Occurrence of technology (source: own calculation)
pretest Posttest

Problem 1 (SE) 25 172
Problem 2 (IAE) 0 7
Problem 3 (AN) 0 1
Problem 4 (SD) 2 82
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4.2. Secondary hypothesis

The studied dependent variable is the phenomenon of no response. This phe-
nomenon takes value from 0 to 1368. The first bound describes the situation when
all 342 pupils started to solve all four assigned problems, and the latter describes
the situation when none of the pupils started to solve any of the four assigned
problems. At the moment, we are watching the phenomenon as a whole, while we
are not dealing with individual pupils or individual problems. Table 11 presents
the values from the pre-test and post-test.

Table 11: Number (and percentage) of no response (source: own calculation)
Number Percentage

Pretest 492 36%
Posttest 233 17%

The pre-test and the post-test comparisons were conducted using McNemars’
test (with 0.01 level of significance) again.

The null hypothesis H0 in this case reads as follows: The probability of im-
provement along with a decline between the pre-test and the post-test is equal.

Statistical evaluation allows us to state that χ2 = 97.17 if p = 0.0000 and so
the null hypothesis H0 has been rejected.

The secondary hypothesis holds and we can state that the pre-test and the
post-test have proved a statistically significant decline in the share of pupils who
do not even try to solve the problem.

5. Discussion

5.1. Interpretation of our results

5.1.1. Primary hypothesis

The primary hypothesis of our study states:
There will be a statistically significant increase in the success rate of prob-

lem solving between the pre-test and the post-test thanks to the use of heuristic
strategies (when using the technology actively).

The results show that we cannot state that a straight way of solving has an
impact on a statistically significant increase in problem solving.

This is caused by the fact that the number of straight way solutions increased,
but only by 7%. We think this increase had to be expected and corresponds to
the natural development of pupils over the given period of time.

Let us now interpret the phenomenon of using heuristic strategies and tech-
nology together because they were interrelated in the test to a certain extent.

Let us first compare the results from tables 7 and 10. The first that can be
stated is a significant increase in frequency and success rate in the use of the
strategies SE, AN and SD. If we focus on table 10, we can also state that in the
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case of strategies SE and SD this goes hand in hand with an increase in the use
of technology while solving the problems.

Within the strategy SE, the reason would be its algorithmic character. The
post-test analyses have shown that all solvers used a spreadsheet. The reason for
the high success rate of solvers while using the strategy SE is the fact that tasks
solved using this strategy can be identified more easily in comparison to other
types of tasks.

Considering the strategy SD, we assume the increase in the use of this strategy
may signal a deeper understanding of the problem in the sense of visual thinking,
as used by Nelsen (1993; 2000). It is the use of technology in problem solving
through strategy SD, thanks to which the pupils were able to experiment easily
using a dynamic geometry system, that we believe could have been the reason for
a deeper understanding of the problem.

The strategy AN was used by the fewest pupils both in the pre-test and the
post-test. We assume the reason for this to be the fact that the assignments
together with the character of the effectively solvable problem through the use of
a strategy AN are not particularly invited to apply the strategy, which is the case of
the other strategies. The set of problems effectively solvable through the use of the
strategy AN is much more variable compared to the problem effectively solvable
through the use of the three remaining strategies (Přibyl, Eisenmann, 2014). It
can be stated that the use of technology while solving problem 3 was marginal.
The analysis of written tests showed that pupils were able to use the strategy AN
successfully (tab. 4) without using technology (tab. 7), which contradicts our
expectations.

It can also be stated that the use of technology while solving problem 2 was
marginal. The increase in the successful use of the strategy IAE (tab. 4) may
be the outcome of the experimental teaching where the active use of a dynamic
geometry system when solving problems using the strategy IAE enabled pupils to
get a feel for the active use of the proposed auxiliary elements as was shown in
the analysis of the post-test.

5.1.2. Secondary hypothesis

The secondary hypothesis of our study states:
There will be a statistically significant decline in the frequency of no response

(a situation when the pupils do not even start solving the problem) between the
pre-test and the post-test.

This hypothesis corresponds to our assumption that a pupil’s success, when
solving problems using a heuristic strategy will bring about a positive change in the
pupil’s attitude toward problem solving in general. The pupil will not give up the
solving process at the beginning even in case they do not know the needed solving
algorithm because they gain experience with heuristic strategies. Technology gives
them the chance to experiment and to at least attempt to solve the problem using
one of the here discussed strategies.

The results show (see subsection 4.2) that the secondary hypothesis holds.
However, it is hard to say whether this was as a consequence of the experimental
teaching or through the natural development of the pupils. Still, it can be assumed
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that the long-term experience of using suitable heuristic strategies played a role
in the pupils’ decision at least to try the solution.

5.2. Relations of study results with theory and practice

Understanding the fact that solving problems plays an irreplaceable role in
teaching mathematics, this issue has been reflected in other individual fields of
didactics of mathematics. Each of the fields accentuates a different sphere of
education and each approaches the outcomes of our research discussed here in
a different way.

Constructivism also covers the Theory of didactical situations, which is sup-
ported by the authors. The changes in approaches that have been mentioned to
have had a positive impact on the experimental teaching have become a part of
the didactical contract and they are, among others, described in (Artigue et al.,
2014).

The introductory subsection refers to the curricular document (NCTM 2000),
where the potentials of using technology to accelerate and to conduct calculations
along with visualizing ideas have been described. The results of the conducted
study show that one of the possibilities of exploiting the potential of technology is
to use the technology while solving problems by some selected heuristic strategies.

Another important curricular document (ACARA, 2015) has formulated the
targets of using technology in teaching mathematics: “Pupils develop ICT ca-
pability when they investigate, create and communicate mathematical ideas and
concepts using fast, automated, interactive and multimodal technologies. They
employ their ICT capability to perform calculations, draw graphs, collect, man-
age, analyse and interpret data.” (p. 12) Our research outcomes prove that prob-
lem solving by selected heuristic strategies is an appropriate means to fulfil the
above-mentioned targets.

The National Research Council has specified that the term Mathematical pro-
ficiency is traditionally formed by four components: “procedural fluency – know-
ing how and when to apply procedures, conceptual understanding – holding deep
and rich connections among ideas, adaptive reasoning – the capacity to reason
logically and to justify one’s reasoning, and strategic competence – formulating,
representing, and solving problems”. (Philipp, Siegfried, 2015, p. 489) The results
presented here show that the use of technology while solving problems with the use
of the strategies SE and SD has contributed to the development of mathematical
proficiency in pupils, especially in the field of procedural fluency.

Using technology while solving problems with heuristic strategies may be con-
sidered as one of the possible forms of scaffolding. It is a field given special
attention in the present days (e.g. Bakker et al., 2015; van Oers, 2014). Our
research has brought another dimension into the area, encouraging positive atti-
tudes in pupils to solving problems in such cases when they are not clear about the
solution procedure (the algorithm to be used to deal with the task successfully).
Using technology allows them to benefit from applying some heuristic strategies.
Pupils can overcome, for example, the obstacles caused by the need to tackle tech-
nically challenging difficult mathematics calculations or a large number of analogy
calculations together with the necessity to draw accurately or measure the length
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of the line segment, the sizes of angles or the area of geometric forms. If we un-
derstand scaffolding as a set of supportive measures efficiently helping pupils gain
new knowledge and skills, then use of technology is one of these means of support
allowing to overcome the above-mentioned obstacles.

It is necessary to emphasize that we do not expect that using technology while
solving mathematical problems should become a universal tool for solving word
problems. However, we recommend giving students the opportunity to become
familiar with different methods and to choose a suitable method or combination of
methods for themselves. In accordance with (Jančařík, Novotná, 2011) the results
gained using a computer must be further interpreted and, in many cases must be
set into a broader framework using other solving methods.

The results of this research can be used in teacher education. It is essential that
future teachers become familiar with problem solving using heuristic strategies as
well as the use of suitable technology in solving problems using these strategies.
Without this experience, teachers are not likely to encourage their pupils to use
technology.

5.3. Limitations of our research

To conclude this chapter, let us have a look at some limitations we are aware
of. These limitations have to be taken into account when interpreting the results,
or when planning a new research study.

5.3.1. Selected heuristic strategies

A certain limitation of the presented study is its restriction to the discussed
four heuristic strategies. These strategies were selected because, in our opinion,
they have the greatest potential for the use of technological devices within the
solving process. In the case of the strategy SE, the spreadsheet seems to be the
choice number one to make a list of all possible solutions. The nature of the strate-
gies IAE and SD in the case of geometrical problems encourages experimentation
with dynamic geometry systems. One of the most efficient uses of the strategy AN
is the formulation of a problem with more “user-friendly” objects, for example,
smaller numbers.

The nature of other heuristic strategies (guess – check – revise, problem re-
formulation, working backwards, generalization and specification, use of false as-
sumptions, decomposition into simpler cases, omitting a condition) makes them
less suitable for the use of technological devices within the solving process (Přibyl,
Eisenmann, 2014).

5.3.2. Research sample

The 14 classes were selected according to the teacher, who had been chosen us-
ing the above-listed criteria (see subsection 3.4). Let us now discuss the limitations
this selection implies:

The participating teachers are regarded as comparable. This “comparability”
is based on the fact that we got to know them in the in-service teacher training
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courses. However, there might be differences between them – both in the degree
of their involvement and the quality of teaching. We regard these differences as
the first limitation of our study.

Another limitation is the “comparability” of the fourteen classes. However,
they are all ordinary classes with no specialization, the classes do not integrate
pupils with major learning difficulties, and each class as a whole may be seen as
average with respect to its performance and discipline.

5.3.3. The research instrument

Selection of only one tool for the evaluation of our research hypotheses may
also be seen as a limitation. This tool was the written test. However, we are
convinced that for the needs of verification of our research hypotheses, this tool
was sufficient.

Furthermore, the choice of a quasi-experiment without a control group might
be perceived as a limitation to our study. However, having thought about it
thoroughly at the beginning of the research and taking into account our previous
experience, we decided on this form of experiment, mainly because of the difficulty
to secure the comparability of independent variables during the 10-month teaching
experiment in both groups.

5.3.4. Used technology

The selection of three types of technological devices used in the experimen-
tal teaching (computer, laptop, and tablets) does not comply with the currently
frequently used technologies (e.g. smartphones).

6. Conclusions

Let us focus on the pupils’ success rate in the solution of problems effectively
solvable using the strategies systematic experimentation and solution drawing.
The results of the study show that as a consequence to the 10-month experimental
teaching of the four here discussed heuristic strategies, the success rates improved
significantly if the use of these strategies went hand in hand with the active use
of technological devices.

In the case of the strategy IAE, the problem solving success rate was supported
by the experimental teaching within whose frame technology was used. However,
the use of technology in the testing itself was marginal.

The changes could also be observed in pupils’ attitude to problem solving. The
fact that the number of cases when pupils gave up the solution decreased to one
half, is undoubtedly very positive.

The results of our research (Eisenmann et al., 2015) have shown the opportuni-
ties for successful use of heuristic strategies in mathematics classrooms in primary
and secondary schools and the results given in this article stress the positive im-
pact of the use of technology with four selected heuristic strategies. We assume
that pupils should have a chance to actively use the opportunities that are brought
into classrooms through technology.
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In the final part of this section, we propose how this study can be further
developed. A few other directions opening in front of us may be traced. The first
opportunity is to focus on other heuristic strategies than those that have been the
target of our research. It is feasible to see that heuristic strategies offer such types
where the use of technology is not only possible, but also appropriate.

The second point of view comes from a compact research oriented to pupils
with disabilities (Hasselbring et al., 2006). Technology is an irreplaceable means
enabling education with a number of disabilities, speaking of both, sensual disabil-
ity (e.g. sight impairment) and functional disability (e.g. dyspraxia, dyscalculia).

The third possible direction of further research is the verification of results
concerning the description of changes in attitudes of pupils towards problem solv-
ing and that through other means focusing on the pupils as such – an analysis of
observing pupils. This analysis could be supplemented by structured interviews
with teachers and a questionnaire survey for pupils.

The last direction opens in the field of using mobile technological devices in
teaching mathematics, considering classical classroom teaching or out-of-school
education.

To conclude, we can say that the limited results of the here presented research
study show that the use of technology in mathematics lessons as such, specifically
at different levels of the whole educational process, is meaningful. In the first place,
it should be used in primary and secondary school lessons not only in problem
solving but also in inquiry-based learning. It proved to be very useful to introduce
in-service and pre-service teachers into the potential of the use of technology in
their connection with the use of heuristic strategies in problem solving. If in-service
and pre-service teachers have needed information about the potential of the use
of technology in education, they may put pressure on policymakers to support
actively efficient use of technology in school practice.
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