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Abstract. We present a proof of the Hurwitz Theorem about construction and
properties of real numbers, complex numbers, quaternions and octonions. In
the proof we use the Dickson double for Cayley-Dickson algebras.

1. Introduction

The famous Hurwitz Theorem about real finite-dimensional composition alge-
bras witnessed many proofs in the last decades, for example in (Ebbinghaus, H.D.,
Hermes, Hirzebruch, Koecher, Mainzer, Neukirch, J., Prestel, Remmert, 1990) and
in (Adamaszek, 2006). In this article, we present a proof that is based on the so-
called Dickson Double, i.e., a procedure of doubling the dimension of a given
algebra. Unfortunately, in this process certain algebraic properties of the original
algebra are lost.

In the article, we present an approach devoted to composition algebras. One
can follow a different path; Frobenius limits to division algebras and therefore
octonions are not included in his result (Sierpiński, 1966).

The article is organized as follows. We start with basic definitions and de-
scriptions of quaternions and octonions which will be constructed later using the
Dickson double. Next, we prove the Hurwitz Theorem and we obtain as conclusion
that every finite-dimensional composition algebra has dimension 1, 2, 4 or 8. Hopf,
using methods of topology, proved that the dimension of a division algebra over
the real numbers is a power of 2. We clarify that this power of two must be either
1, 2, 4 or 8 (Hopf, 1940). The original proof of the Hopf Theorem uses a major
result from algebraic topology that is known under the name of Bott periodicity
and proven by Kervaire and Milnor (Bott, Milnor, 1958).
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The proof we are about to present is mostly a collection of well-known results
with a little twist from the author. Instead of relying on the results from various
branches of mathematics, we use just classical algebraic tools and hence the proof
itself is elementary and self-contained. We establish the missing components in the
existing results and improve several existing results, such as Lemmas 3.12 − 3.14.
This approach simplifies the understanding of the theorem and the structure of
composition algebras, which is often complicated by the use of different tools from
other fields.

This work is based on the Author’s bachelor’s thesis.

Main Theorem 1 (Hurwitz) (Smith, D.A., Conway, J.H., 2003) The only real
finite-dimensional composition algebras are R, C, H and O.

2. Preliminaries

Let us start by introducing fundamental definitions used in this article.

2.1. Algebras

Definition 2.1 An algebra (A, +, ·,R, ·) with identity 1 is called a division alge-
bra if every nonzero element in this algebra is invertible, i.e, for every x ∈ A \ {0}
there exists x′ ∈ A \ {0} such that xx′ = x′x = 1.

Definition 2.2 Consider a linear operator A ∋ x 7→ x∗ ∈ A having the following
properties:

(i) (xy)∗ = y∗x∗ for all x, y ∈ A,

(ii) x∗∗ := (x∗)∗ = x for all x ∈ A.

A pair (A, ∗) is called *-algebra.

Definition 2.3 The Cayley-Dickson algebra (A,∗ ) is defined as ∗-algebra (A ×
A,∗ ) with the operations:

(a, b) + (c, d) = (a + c, b + d) for (a, b), (c, d) ∈ A × A,
α · (a, b) = (αa, αb) for α ∈ R, (a, b) ∈ A × A,

(a, b) · (c, d) = (ac − db∗, cb + a∗d) for (a, b), (c, d) ∈ A × A,

where the conjugate ∗ : A × A → A × A is defined by the formula:

(a, b)∗ = (a∗, −b) for (a, b) ∈ A × A.

Cayley-Dickson algebras are defined in an iterative way, starting from the field
of real numbers (with trivial conjugation). In the first step we obtain the field
of complex numbers which is a two dimensional Cayley-Dickson algebra over the
field of real numbers. Note that the algebra of real numbers has dimension 1 = 20.
In general, a Cayley–Dickson algebra of dimension 2n is constructed using the
Cayley–Dickson construction from an algebra of dimension 2n−1.
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Definition 2.4 Let (A, +, ·,R, ·) be an algebra with identity.

• A nondegenerate quadratic form [·] : A → R is called a quadratic norm.

• We say that A with a quadratic norm [·] : A → R is a composition algebra
if [x · y] = [x] · [y] for all x, y ∈ A.

For the purpose of this article we consider finite- dimensional composition
algebras. This assumption holds for all results in the article.

Definition 2.5 Let H be a non-empty subset of vector space V with inner product
[·, ·]. A linear subspace

A⊥ = {v ∈ V : [v, u] = 0 for all u ∈ A }

is called the orthogonal complement of the set H.

2.2. Quaternions

Consider the standard four-dimensional vector space H := R4 over the field of
real numbers. Let us denote 1 := (1, 0, 0, 0), i := (0, 1, 0, 0), j := (0, 0, 1, 0), k :=
(0, 0, 0, 1). We define multiplication in H as follows: for two elements x01 + x1i +
x2j + x3k, y01 + y1i + y2j + y3k ∈ H we put

(x01 + x1i + x2j + x3k) · (y01 + y1i + y2j + y3k)
:= (x0y0 − x1y1 − x2y2 − x2y3)1 + (x0y1 + x1y0 + x2y3 − x3y2)i+

(x0y2 − x1y3 + x2y0 + x3y1)j + (x0y3 + x1y2 − x2y1 + x3y0)k.

Then H is a non-commutative division algebra of dimension four, called the quater-
nions.

Note that we can also define H as the standard two-dimensional vector space
C2 over C.That is, each element x01+ x1i + x2j + x3k is identified with a pair of
complex numbers (x0 +x1i, x2 +x3i) with the following multiplication (Sierpiński,
1966)

(x0, x1) · (x2, x3) = (ac − bd∗, ad + bc∗) for (x0, b), (c, d) ∈ C × C,

where z∗ denotes the complex conjugate of a complex number z. This is a second
way of defining multiplication in H after Definition 2.3.

2.3. Octonions

We can construct the octonions O in three different ways (Baez, J.C., 2002):

• as an eight-dimensional algebra with identity 1 over the field of real numbers,
which elements are of the form

x01 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7,

where em ̸= en for m ̸= n and e2
m = −1 for all m, n ∈ {1, . . . , 7},
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• as quadruples of complex numbers,
• as pairs of quaternions.

Addition in O is understood as adding vectors in eight-dimensional vector space
with the basis {1, e1, . . . , e7}, but multiplication is based on the rule described on
the graph presented in Figure 1.

Figure 1: Multiplication rule for the basis in octonions (this picture was captured
from (Baez, J.C., 2002)).

The product of two adjacent elements on a segment (or a circle) is given as the
third element on that segment (or circle) if the product is taken in the direction
of the arrow (e.g. e3 · e4 = e6), or as minus the third element on that segment
(or circle) if the product is taken in the opposite direction (e.g e6 · e4 = −e3).
On the other hand, when calculating the product of non-adjacent elements on the
same segment, we get the third element on this segment with the "-" sign for arrow
direction (e.g. e3 · e6 = −e4) or with the "+" sign (e.g. e6 · e3 = e4) otherwise.

Corollary 2.6 According to the above rules, it turns out that the operation of
multiplication in the set O is not associative, because for example we have (e3 ·
e4) · e5 = e6 · e5 = −e1 and e3 · (e4 · e5) = e3 · e7 = e1.

3. A proof of the Main Theorem

Before we prove the Main Theorem, which is the Hurwitz Theorem, we have
to present some auxiliary results. This part is based on (Smith, D.A., Conway,
J.H., 2003) and (Schafer, R.D., 1966).

3.1. Properties of quadratic norms and inner products

Let us show some properties which follow from the existence of a norm in a
composition algebra.
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Let (X, [·]) be a composition algebra. In this algebra we can consider the inner
product [·, ·] : X → R defined as follows

[x, y] = 1
2
(
[x + y] − [x] − [y]

)
for x, y ∈ X.

Lemma 3.1 (Smith, D.A., Conway, J.H., 2003) Let (X, [·]) be a composition al-
gebra and take x, y ∈ X. If [x, t] = [y, t] for all t ∈ X, then x = y.

Proof. Let us assume that [x, t] = [y, t] for every t ∈ X. Then

[x − y, t] = [x, t] − [y, t] = 0 for t ∈ X.

In particular, for t = x − y we get [x − y] = [x − y, x − y] = 0. Since, the norm [·]
is nondegenerate, so x − y = 0, and thus x = y.

Lemma 3.2 (Smith, D.A., Conway, J.H., 2003) Let (X, [·]) be a composition al-
gebra. Then

(i) [xy] = [x][y] for all x, y ∈ X,

(ii) [xy, xz] = [x][y, z] and [xz, yz] = [x, y][z] for all x, y, z, ∈ X,

(iii) [xy, uz] = 2[x, u][y, z] − [xz, uy] for all x, y, z, u ∈ X.

Proof. The property (i) is a consequence of Definition 2.4. Take any x, y, z, ∈
X. Then using the property (i) we get

[xy, xz] = [xy + xz] − [xy] − [xz]
2 = [x(y + z)] − [x][y] − [x][z]

2

= [x][y + z] − [x][y] − [x][z]
2 =

[x]
(
[y + z] − [y] − [z]

)
2

= [x] [y + z] − [y] − [z]
2 = [x][y, z].

Similarly we show that

[xz, yz] = [x, y][z]

This shows the property (ii).
Now, by substituting x + u for x in the property (ii), we obtain

[(x + u)y, (x + u)z] = [xy + uy, xz + uz] = [xy, xz] + [xy, uz] + [uy, xz] + [uy, uz].

Thus

[xy, uz] = [(x + u)y, (x + u)z] − [xy, xz] − [uy, xz] − [uy, uz]

= [x + u][y, z] − [x][y, z] − [uy, xz] − [u][y, z]

= ([x + u] − [x] − [u])[y, z] − [uy, xz] = 2[x, u][y, z] − [uy, xz].
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Now we prove more properties of composition algebras connected with the
inner product and the conjugation.

Definition 3.3 Let (X, [·]) be a composition algebra and x ∈ X. A conjugate x
of x is the element of X defined as follows

x = 2[x,1]1 − x.

Lemma 3.4 (Smith, D.A., Conway, J.H., 2003) Let (X, [·]) be a composition al-
gebra. Then

(i) [xy, z] = [y, xz] and [xy, z] = [x, zy] for x, y, z ∈ X,

(ii) x = x for x ∈ X,

(iii) xy = y x for x, y ∈ X.

Proof. Substituting 1 for u in Lemma 3.2 (iii), we get

[xy, z] = [xy,1z] = 2[x,1][y, z] − [xz,1y] = [y, 2[x,1]z] − [xz, y]
= [y, 2[x,1](1z)] − [y, xz] = [y, (2[x,1]1)z − xz]
= [y, (2[x,1]1 − x)z] = [y, xz].

Similarly we show that
[xy, z] = [x, zy].

Let us substitute 1 for y and t for z in the property (i). As a consequence, we have

[x, t] = [x1, t] = [1, xt] = [xt,1] = [t, x1] = [x1, t] = [x, t].

Thus x = x. By (ii) for arbitrary t we have

[y x, t] = [x, yt] = [x, yt] = [x t, y] = [t, xy] = [t, xy] = [t,1(xy)] = [t xy,1] = [xy, t],

so by Lemma 3.1 we have y x = xy.

Corollary 3.5 (Springer, T.A., Veldkamp, F.D., 2000) Every composition al-
gebra is a division algebra.

Proof. Let (X, [·]) be a composition algebra. We will prove that for any x ∈
X \ {0}, the element x̂ := 1

[x] x is the inverse of x.
Take any x ∈ X. Using Lemma 3.4 (i) we obtain

[xx, t] = [x, xt] = [x1, xt] = [x][1, t] = [[x]1, t],
[xx, t] = [x, tx] = [1x, tx] = [x][1, t] = [[x]1, t].

By Lemma 3.1 we get xx = [x]1 = xx, which means that

x

(
1

[x]x
)

= 1 =
(

1
[x]x

)
x.

Thus x−1 = x̂ = 1
[x] x.
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3.2. Cayley-Dickson algebras

In this section we prove the Hurwitz Theorem. We start with the construction
of the Cayley-Dickson subalgebra.

Lemma 3.6 Let X be an algebra with a quadratic norm [·]. Assume that H is a
finite-dimensional proper subalgebra of X. Then there exists a unit vector i ∈ H⊥,
i.e., a vector i ∈ X such that [i] = 1 and [a, i] = 0 for all a ∈ H.

Proof. Since H is a finite-dimensional proper linear subspace of X, there exists
a non-zero vector j ∈ H⊥. Using the fact that a quadratic norm in a composition
algebra is positive-definite, we get [j] > 0. Let us define i := 1√

[j]
· j. Then

[i] =
[

1√
[j]

· j

]
= 1

[j] · [j] = 1.

For all a ∈ H we have

[a, i] =
[

a,
1√
[j]

· j

]
= 1√

[j]
[a, j] = 0,

thus i ∈ H⊥.

The following lemmas present a relation between the quadratic norm and the
inner product in the composition algebra H + iH.

Lemma 3.7 (Smith, D.A., Conway, J.H., 2003) Let (H, [·]H) be a proper subalge-
bra of a composition algebra (X, [·]). Let i ∈ H⊥ be such that [i] = 1. Then:

(i) [a + ib, c + id] = [a, c] + [b, d] for a, b, c, d ∈ H,

(ii) [a + ib] = [a] + [b] for a, b ∈ H,

(iii) a + ib = a − ib for a, b ∈ H,

(iv) (a + ib)(c + id) = (ac − db) + i(cb + ad) for a, b, c, d ∈ H.

Proof. Let us show property (i). Notice that

[a + ib, c + id] = [a, c] + [a, id] + [ib, c] + [ib, id]
= [a, c] + [ad, i] + [i, cb] + [ib, id]
= [a, c] + 0 + 0 + [i][b, d] = [a, c] + [b, d]

and as an immediate consequence of the above we also have property (ii):

[a + ib] = [a + ib, a + ib] = [a, a] + [b, b] = [a] + [b].

Next we have
ib = 2[ib,1] − ib = 2[i,1b] − ib = −ib,
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so a + ib = a + ib = a − ib. Moreover, we have

ib = −ib = −b i = −b(−i) = bi.

To prove property (iv), let us start from the obvious equality

(a + ib)(c + id) = ac + a(id) + (ib)c + (ib)(id).

Then note that the following equalities hold for each t ∈ X:

[a(id), t] = [id, at] = 2[i, a][d, t] − [it, ad] = 0 − [it, ad] = −[t, i(ad)]
= −[t, (−i)(ad)] = [t, i(ad)] = [i(ad), t],

[(ib)c, t] = [ib, tc] = [bi, tc] = 2[b, t][i, c] − [bc, ti] = 0 − [bc, ti] = −[(bc)i, t]
= −[(bc)(−i), t] = [(cb)i, t] = [i(cb), t],

[(ib)(id), t] = [ib, t(id)] = [ib, t(−(id))] = −[ib, t(id)]
= −2[i, t][b, di] + [i(id), tb] = −2[i, t][bd, i)] + [id, i(tb)]
= 0 + [id, (−i)(tb)] = −[id, i(tb)] = −[i][d, tb]
= −[db, t] = [−db, t].

These equalities and Lemma 3.1 imply that

(a + ib)(c + id) = ac + a(id) + (ib)c + (ib)(id) = ac + i(ad) + i(cb) − db

= (ac − db) + i(ad + cb).

If H is a Cayley-Dickson algebra then the structure H + iH with operations
described in Lemma 3.7 is called the Dickson Double. Note that the operations de-
scribed in Lemma 3.7 directly correspond to the operations on (A×A,∗ ) described
in Definition 2.3.

Corollary 3.8 (Smith, D.A., Conway, J.H., 2003) If a composition algebra
(X, [·]) contains a proper subalgebra H and i ∈ H⊥ is such that [i] = 1, then
this algebra also contains the Dickson double subalgebra H + iH of H.

Proof. Let a + ib, c + id ∈ H + iH, where a, b, c, d ∈ H. Then

(a + ib) + (c + id) = (a + c) + i(b + d) ∈ H + iH,

α(a + ib) = αa + α(ib) = αa + i(αb) ∈ H + iH,

(a + ib) · (c + id) = ac − db + i(cb + ad) ∈ H + iH.

Moreover, 0 + i0 ∈ H + iH is the zero element and 1 + i0 ∈ H + iH is the identity
in H + iH. Thus H + iH is a subalgebra of X.
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Lemma 3.9 (Schafer, R.D., 1966) Assume that H is a proper subalgebra of dimen-
sion n of a composition algebra (X, [·]), i ∈ H⊥ and [i] = 1. Then dim(H + iH) =
2n.

Proof. Let h1, . . . , hn be a basis of H. We will prove that h1, . . . , hn, ih1, . . . , ihn

form a basis of H + iH.
Note that if a + ib ∈ H + iH, where a, b ∈ H, then a =

∑n
k=1 αkhk and

b =
∑n

k=1 βkhk for some α1, . . . , αn, β1, . . . , βn ∈ R. Then

a+ib =
n∑

k=1
αkhk+i

(
n∑

k=1
βkhk

)
=

n∑
k=1

αkhk+
n∑

k=1
i(βkhk) =

n∑
k=1

αkhk+
n∑

k=1
βk(ihk),

which means that h1, . . . , hn, ih1, . . . , ihn generates an algebra H + iH.
Consider α1, . . . , αn, β1, . . . , βn ∈ R such that

∑n
k=1 αkhk +

∑n
k=1 βk(ihk) = 0.

In particular, it means that[
n∑

k=1
αkhk +

n∑
k=1

βk(ihk)
]

= 0.

Then

0 =
[

n∑
k=1

αkhk +
n∑

k=1
β(ihk)

]
=
[

n∑
k=1

αkhk + i

(
n∑

k=1
βkhk

)]
=
[

n∑
k=1

αkhk

]
+
[

n∑
k=1

βkhk

]
.

Since the norm [·] is positive-definite, we get[
n∑

k=1
αkhk

]
= 0 and

[
n∑

k=1
βkhk

]
= 0.

Since the norm is nondegenerate, we also have
n∑

k=1
αkhk = 0 and

n∑
k=1

βkhk = 0.

Since h1, . . . , hn are linearly independent, we obtain αk = 0 and βk = 0 for k ∈
{1, . . . , n}. This means that h1, . . . , hn, ih1, . . . , ihn are linearly independent in
H + iH.

Finally we obtain dim(H + iH) = 2n.

Theorem 3.10 (Hopf, 1940) Let (X, [·]) be a finite-dimensional composition al-
gebra over R. Then dim X = 2m for some m ∈ {0} ∪ N.

Proof. If X = R then dim X = 1 = 20. Let us assume that dim X ≥ 2 and
suppose that dim X ̸= 2m for any m ∈ N. Take k ∈ N such that 2k < dim X <
2k+1. We know that X contains the subalgebra R1 and, according to Corollary
3.8, it contains every double Dickson subalgebra of R1 up to the k-th one. It
implies that X contains a subalgebra H of dimension 2k. Thus X contains also
the subalgebra H + iH of dimension 2k+1 > dim X, which is a contradiction.
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Using Lemma 3.7 we can show the construction of extension of a composition
algebra. Such a construction uses the Dickson double.

Theorem 3.11 Let (H, [·]H) be a finite-dimensional composition algebra. In the
set H + iH (where i ̸∈ H) we define the following operations

(a + ib) + (c + id) = a + c + i(b + d) for a + ib, c + id ∈ H + iH,

α(a + ib) = αa + i(αb) for α ∈ R, a + ib ∈ H + iH,

(a + ib)(c + id) = (ac − db) + i(cb + ad) for a + ib, c + id ∈ H + iH,

a + ib = a − ib for a + ib ∈ H + iH.

The mapping [·, ·]H+iH : (H + iH) × (H + iH) → R,

[a + ib, c + id]H+iH = [a, c]H + [b, d]H for a + ib, c + id ∈ H + iH,

is a well-defined inner product in H + iH and [·]H+iH : H + iH → R,

[a + ib]H+iH = [a + ib, a + ib]H+iH = [a]H + [b]H for a + ib ∈ H + iH,

is a non-trivial quadratic norm on H+iH. In particular, the pair (H+iH, [·]H+iH)
is a 2n-dimensional algebra with a quadratic norm.

In the next part, we will prove that the procedure of doubling composition al-
gebras retains the appropriate properties only for three consecutive iterations, but
at every stage it loses some algebraic properties. We will prove three equivalences
in Lemmas 3.12, 3.13, 3.14. One can find similar results in (Smith, D.A., Conway,
J.H., 2003), where they are presented as implications only.

Lemma 3.12 Let (Y, [·]Y ) be a composition algebra and let Z = Y + iZY be the
Dickson double of Y , where iZ ∈ Z, [iZ ]Z = 1 and iZ ∈ Y ⊥. Then Z is a compo-
sition algebra if and only if Y is an associative composition algebra.

Proof. Assume that Z is a composition algebra, that is

[a + iZb]Z [c + iZd]Z = [(ac − db) + iZ(cb + ad)]Z for all a, b, c, d ∈ Y.

Using Lemma 3.7 we get

([a]Y + [b]Y ) ([c]Y + [d]Y ) = [ac − db]Y + [cb + ad]Y
= [ac − db, ac − db]Y + [cb + ad, cb + ad]Y
= [ac, ac]Y − [ac, db]Y − [db, ac]Y + [db, db]Y

+[cb, cb]Y + [cb, ad]Y + [ad, cb]Y + [ad, ad]Y
= [ac]Y − 2[ac, db]Y + [db]Y + [cb]Y + 2[cb, ad]Y + [ad]Y ,

that is

[ac]Y +[ad]Y +[bc]Y +[bd]Y = [ac]Y −2[ac, db]Y +[db]Y +[cb]Y +2[cb, ad]Y +[ad]Y
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for all a, b, c, d ∈ Y . Hence [cb, ad]Y = [ac, db]Y . By Lemma 3.4 (i) it is equivalent
to

[a(cb), d]Y = [(ac)b, d]Y for all a, b, c, d ∈ Y. (1)

Thus, using Lemma 3.1, we get a(cb) = (ac)b for every a, b, c ∈ Y , which means
that Y is an associative composition algebra.

Now let us suppose that Y is an associative composition algebra. From Theo-
rem 3.11 we know that (Z, [·]Z) is an algebra with quadratic norm. Let a, b, c, d ∈
Y , then

[(a + ib)(c + id)]Z = [(ac − db) + iZ(cb + ad)]Z = [ac − db]Y + [cb + ad)]Y
= [ac − db, ac − db]Y + [cb + ad, cb + ad]Y
= [ac, ac]Y − [ac, db]Y − [db, ac]Y + [db, db]Y

+[cb, cb]Y + [cb, ad]Y + [ad, cb]Y + [ad, ad]Y
= [ac]Y − 2[ac, db]Y + [db]Y + [cb]Y + 2[cb, ad]Y + [ad]Y .

The associativity in Y implies the equality (1). By Lemma 3.4 (i) we have
[ac, db]Y = [cb, ad]Y . This implies

[(a + ib)(c + id)]Z = [ac]Y + [db]Y + [cb]Y + [ad]Y
= [a]Y [c]Y + [d]Y [b]Y + [c]Y [b]Y + [a]Y [d]Y
= [a]Y [c]Y + [d]Y [b]Y + [c]Y [b]Y + [a]Y [d]Y
= ([a]Y + [b]Y )([c]Y + [d]Y ) = [a + ib]Z [c + id]Z .

Thus (Z, [·]Z) is a composition algebra.

Lemma 3.13 Let (X, [·]X) be a composition algebra and let Y = X + iY X be the
Dickson double of X, where iY ∈ Y , [iY ]Y = 1 and iY ∈ X⊥. Then (Y, [·]Y ) is an
associative composition algebra if and only if X is an associative and commutative
composition algebra.

Proof. If Y = X + iY X is an associative composition algebra, then its subal-
gebra X is also associative. Let a, b, c, d, e, f ∈ X. Note that(

(a + iY b)(c + iY d)
)
(e + iY f) =

(
(ac − db) + iY (cb + ad)

)
(e + iY f)

= (ac − db)e − f(bc + da) + iY

(
e(cb + ad) + (c a − bd)f

)
= (ac)e − (db)e − f(bc) − f(da) + iY

(
e(cb) + e(ad) + (c a)f − (bd)f

)
(2)

and

(a + iY b)
(
(c + iY d)(e + iY f)

)
= (a + iY b)

(
(ce − fd) + iY (ed + cf)

)
= a(ce − fd) − (ed + cf)b + iY

(
(ce − fd)b + a(ed + cf)

)
= a(ce) − a(fd) − (ed)b − (cf)b + iY

(
(ce)b − (fd)b + a(ed) + a(cf)

)
.

(3)
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The condition of associativity in the algebra Y = X + iY X implies

(ac)e − (db)e − f(bc) − f(da) + iY

(
e(cb) + e(ad) + (c̄ā)f − (bd)f

)
= a(ce) − a(fd) − (ed)b − (cf)b + iY

(
(ce)b − (fd)b + a(ed) + a(cf)

)
for all a, b, c, d, e, f ∈ X. In particular, for a, c, f = 0 and b = 1 we have de = ed
for all d, e ∈ X. It means that X is a commutative algebra.

Let (X, [·]X) be an associative and commutative composition algebra. Then, by
Lemma 3.12, the pair Y = X+iY X with some iY ∈ Y such that [iY ]Y = 1, the pair
(Y, [·]Y ) is a composition algebra. We will prove that this algebra is associative.
Let a, b, c, d, e, f ∈ X. Using (2) and (3) we get(

(a + iY b)(c + iY d)
)
(e + iY f)

= (ac)e − (db)e − f(bc) − f(da) + iY

(
e(cb) + e(ad) + (c̄ā)f − (bd)f

)
and

(a + iY b)
(
(c + iY d)(e + iY f)

)
= a(ce) − a(fd) − (ed)b − (cf)b + iY

(
(ce)b − (fd)b + a(ed) + a(cf)

)
.

Now using associative and commutativity of algebra X we get

(ac)e = a(ce), (db)e = (ed)b̄, f(bc) = (cf)b, f(da) = a(fd),
e(cb) = e(cb), e(ad) = a(ed), (c̄ā)f = ā)(cf), (bd)f = (fd)b,

that is (
(a + iY b)(c + iY d)

)
(e + iY f) = (a + iY b)

(
(c + iY d)(e + iY f)

)
.

Hence (Y, [·]Y ) is an associative composition algebra.

Lemma 3.14 Let (W, [·]W ) be a composition algebra and let X = W + iXW be its
Dickson double, where iX ∈ X is such that [iX ]X = 1 and iX ∈ W ⊥. Then X is an
associative and commutative composition algebra if only and if W is commutaive
and associative composition algebra such that the operation of conjugate is trivial,
i.e, a = a for every a ∈ W .

Proof. The algebra W is associative and commutative as subalgebra of X.
Let a ∈ W . We have iX = −iX . By Lemma 3.4 (iii) and Lemma 3.7 (iii) we obtain

−(aiX) = a(−iX) = aiX = iXa = −iXa,

Thus, since W is commutative, we have aiX = aiX for a ∈ W . This implies
(a − a)iX = aiX − aiX = 0. Hence 0 = [(a − a)iX ]X = [a − a]X · [iX ]X = [a − a]W .
Simultaneously, the norm [·]W is positive definite, thus a = a for all a ∈ W .

On the other hand, if (W, [·]W ) is a commutative and associative composition
algebra with trivial conjugation and X = W + iXW is its Dickson double algebra,
then for all a, b, c, d ∈ W we have

(a+iXb)(c+iXd) = (ac−db)+iX(cb+ad) = (ca−bd)+iX(ad+cb) = (c+iXd)(a+iXb),

what means that (X, [·]X) is a commutative and associative composition algebra.



A proof of the Hurwitz’s theorem on composition algebras [113]

The following Lemma, according to our best knowledge, is well-known in alge-
bra. However, we were unable to find any reliable source of that fact. We therefore
leave it without citing any source.

Lemma 3.15 If (W, [·]W ) is a composition algebra with a trivial conjugation, then
dim W = 1.

Proof. Let (W, [·]W ) be a composition algebra with trivial conjugation and
suppose that dim W ≥ 2. Then R1 is a non-trivial subalgebra. By Lemma 3.6,
there exists an identity vector iX ∈ (R1)⊥ (that is [iX ,1] = 0). On the other
hand, iX = iX = 2[iX ,1]1 − iX = −iX , what implies that iX = 0. This is a
contradiction.

We are ready to prove the Hurwitz Theorem.

Proof. [Proof of Main Theorem] Let (Z, [·]Z) be a finite-dimensional com-
position algebra. By Theorem 3.10, the dimension of Z is equal to 2m for some
m ∈ {0} ∪ N. From the proof of Theorem 3.10 we see that we can construct Z as
an iteration of Dickson double of its non-trivial subalgebra (R1, [·]R).

If dim Z = 1, then Z = R. Let us assume that dim Z > 1. Using (3.8) and
Lemma 3.9 we see that Z contains the two-dimensional Dickson doubled R + iR
of the algebra R. By Theorem 3.11 and Lemma 3.14, the doubled C := R + iR
is a commutative and associative composition algebra with non-trivial quadratic
norm [x + iy]C = [x]R + [y]R = x2 + y2 for x + iy ∈ C.

If dim Z = 2, then Z = C. Let us assume that dim Z > 2. By Corollary 3.8 and
Lemma 3.9 the algebra Z contains the four-dimensional Dickson double C + jC
of C. Using Theorem 3.11 and Lemma 3.13, its Dickson double H := C + jC
is an associative and composition algebra with the non-trivial quadratic norm
[x + jy]H := [x]C + [y]C for x + jy ∈ H.

If dim Z = 4, then Z = H. Assume that dim Z > 4. Using Corollary 3.8
and Lemma 3.9 we obtain that Z contains the eight-dimensional Dickson double
H+ νH of H. By Theorem 3.11 and Lemma 3.12 Dickson double O := H+ νH is a
composition algebra with the non-trivial quadratic norm [x + νy]O := [x]H + [y]H
for x + νy ∈ O.

If dim Z = 8, then Z = O. Assume that dim Z > 8. By Corollary 3.8,
the algebra Z contains the doubled O + µO of O. Theorem 3.11 implies that
S := O + µO is an algebra with the quadratic norm [x + µy]S = [x]O + [y]O
for x + µy ∈ S. Suppose that (S, [·]S) is a composition algebra. Then (O, [·]O) is
an associative composition algebra by Lemma 3.12. Thus, by Corollary 2.6, we
obtain a contradiction. It follows that the assumption dim Z > 8 is impossible,
what completes the proof of the theorem.

From the proof we obtain:

Corollary 3.16 The only finite-dimensional composition algebras are:

(i) R which is ordered and one-dimensional commutative and associative com-
position algebra with the trivial conjugation,
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(ii) C which is two-dimensional commutative and associative composition algebra
with a non-trivial conjugation,

(iii) the non-commutative field H, which is four-dimensional non-commutative
and associative composition algebra with a non-trivial conjugation,

(iv) the non-commutative and non-associative field O, which is eight-dimensional
non-commutative and non-associative composition algebra with a non-trivial
conjugation.
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