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Abstract. The paper contains several theorems about the Browder type con-
traction fixed points and some of their applications.

1. Introduction

The paper demonstrates several theorems about fixed points of so-called
ψ-contractive mappings, that is mappings of type „d (f(x), f(y)) ⩽ ψ (d(x, y))”,
where a function ψ meets certain conditions. It also contains the application of
these theorems to approximate the golden number, thus complementing works
(Barcz, 2019) and (Barcz, 2020). Some generalization of Hutchinson’s fixed point
theorem is given further. The constructions of two new fractals is also presented,
which are:

(i) a Sierpinski type carpet,

(ii) a graph of a continuous function nowhere-differentiable (other than in
(Katsuura, 1991)).

These constructions use the system of iterated functions, which in (i) consists of
several contractions with the same contraction constant, and in (ii) not all con-
traction constants are equal. Theorem 10, which is a version of Browder’s theorem,
was helpful in the construction of fractal (i), and Hutchinson’s theorem was helpful
in the construction of fractal (ii).

Let us add that fractals such as those described in the work have a number
of connections with other mathematical objects. For example, Sierpinski’s triangle
(which is also presented in this paper) has surprising connections with objects
such as Pascal’s triangle, chaos game, L-systems, some cellular automata as game
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of life described by John Conway in 1970. Topics related to fractals were initiated
by Polish mathematicians such Sierpinski, Banach and Ulam. Let us also add
that in many areas fractal applications can be found, for example as a method
of data compression and the principle of construction of cell phone antennas. In
view of the above connections, the educational significance of many themes of
the (fashionable and promising) fractal theory is important. Therefore, it is worth
popularizing fractals and thus getting closer to modern mathematics lessons, which
will also be associated with fractal geometry objects.

For students interested in chaos and fractals, the item (Peitgen, Jurgens,
Saupe, 1992) and publications on the subject matter may be useful.

2. Fixed points of generalized contractions and examples of their
application

Definition 1
A golden section of the segment of length d is called a division into smaller sections
of lengths x and d− x, in which

d

x
= x

d− x
.

Definition 2
For a given rectangle with side lengths in the ratio 1 : x, we will call the golden
proportion of the only ratio 1 : φ at which the original rectangle can be divided into
a square and a new rectangle which has the same ratio of sides 1 : φ.

Definition 3
The golden rectangle is called a rectangle in which the ratio of the lenght of its
sides is 1 : φ.

Definition 4
Fibonacci sequence is a sequence defined recursively as follows:

f1 = f2 = 1, fn+1 = fn−1 + fn, n ≥ 2

(sometimes formally accepted f0 = 0 and then the recursive formula is valid for
n ≥ 1).

Definition 5
Fibonacci numbers are called consecutive terms of the sequence (fn).

Definition 6
A mapping f of a metric space (X, d) into itself satisfying the condition

d (f(x), f(x′)) ⩽ ψ (d(x, x′)) for all x, x′ ∈ X

with the function ψ : ⟨0,∞) → ⟨0,∞) which is non-decreasing, right continuous
and such that ψ(t) < t for each t > 0 we call a Browder contraction.
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Definition 7
Let (X, d) be a metric space and f : X → X. We say that a mapping f is ψ-
contractive if it meets the condition

d (f(x), f(x′)) ⩽ ψ (d(x, x′)) for all x, x′ ∈ X,

where ψ : ⟨0,∞) → ⟨0,∞) is any function such that

(i) ψ is non-decreasing and right-continuous,

(ii) ψn(t) → 0 for each t > 0.

Lemma 1
(see (Barcz, 1983)) Let ψ : ⟨0,∞) → ⟨0,∞) be a non-decreasing function such that
ψn(t) → 0 for each t > 0. Then ψ(t) < t for each t > 0.

Lemma 2
Let ψ : ⟨0,∞) → ⟨0,∞) be a non-decreasing and right continuous function such
that ψ(t) < t for each t > 0. Then ψn(t) → 0 for each t > 0.

Proof. From ψ(t) < t for fixed t > 0 we have ψn(t) ⩽ ψn−1(t) ⩽ · · · ⩽ ψ(t) <
t. So we have a non-increasing sequence of non-negative numbers ψn(t), therefore
convergent to l ⩾ 0. Assumption l = limn→∞ ψn(t) > 0 leads to a contradiction:
l > ψ(l) = ψ (limn→∞ ψn(t)) = limn→∞ ψn+1(t) = l.

On the basis of Lemmas 1 and 2 we get the following

Fact 1
If f is ψ-contractive on the metric space (X, d), then f is a Browder contraction
on this space, and conversely.

Theorem 1
(Hillam, 2018) Let x ∈ ⟨0, 1⟩ and a continuous function T : ⟨0, 1⟩ → ⟨0, 1⟩ be given.
The iterative sequence {xn = Tnx} converges to a fixed point of the mapping T if
and only if

lim
n→∞

|Tn+1x− Tnx| = 0.

It turns out that this result does not transfer to the higher-dimensional cases
(compare J. Górnicki, Okruchy matematyki, PWN, Warszawa, 2009, p. 187).
Theorem 1 will be useful in proof of Theorem 3.

Theorem 2
(Edelstein, 1962) Let X be a compact metric space and let f : X → X be a
contractive mapping, that is d (f(x), f(y)) < d(x, y) for all x ̸= y in X. Then f
has a unique fixed point. Further, for any x ∈ X, the iterative sequence (fn(x))
converges to the fixed point.

Theorem 3
Let f : ⟨a, b⟩ → ⟨a, b⟩ be ψ-contractive. Then f has a unique fixed point u, and
fn(x0) → u for each x0 ∈ ⟨a, b⟩.
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Proof. Since f is a continuous mapping, so the function F : ⟨a, b⟩ → R given
by the formula F (x) = f(x) − x is a continuous function, moreover, it satisfies
inequalities F (a) ⩾ 0, F (b) ⩽ 0. Therefore on the basis of the Darboux property
F has a point u ∈ ⟨a, b⟩ such that F (u) = 0. It means that f(u) = u. That u is the
unique fixed point results from the following reasoning: for if u = f(u) ̸= f(v) = v
we get a contradiction

|u− v| = |f(u) − f(v)| ⩽ ψ (|u− v|) < |u− v|.

Now let us take any x0 ∈ ⟨a, b⟩ and let us create a sequence (xn), xn = f(xn−1),
n = 1, 2, . . . Then

|fn+1(x0) − fn(x0)| ⩽ ψ
(
|fn(x0) − fn−1(x0)|

)
⩽ · · · ⩽ ψn (|f(x0) − x0|) → 0.

Therefore on the basis of Theorem 1 we get a convergence fn(x0) → u.

Remark 1
From Theorem 3 it follows Banach Contraction Principle for the space X = ⟨a, b⟩
in the case when ψ(t) = qt, t ⩾ 0, where q < 1 is a contraction constant.

Corollary 1
Let a mapping f : D(x0, r) → R be a ψ-contractive mapping, where D(x0, r) =
⟨x0 − r, x0 + r⟩. If |f(x0) − x0| ⩽ r−ψ(r), then f has a unique fixed point u, and
fn(x) → u for each x ∈ D(x0, r).

Proof. Let x be any point in D(x0, r), i.e. |x − x0| ⩽ r. Then we get the
inequality |f(x) − f(x0)| ⩽ ψ (|x− x0|), so

|f(x) − x0| ⩽ |f(x) − f(x0)| + |f(x0) − x0| ⩽ ψ (|x− x0|) + |f(x0) − x0| ⩽

⩽ ψ (|x− x0|) + r − ψ(r) ⩽ ψ(r) + r − ψ(r) = r,

which means that f : D(x0, r) → D(x0, r). The conclusion follows from Theorem
3.

Remark 2
Because ψ(t) < t, t > 0 for a ψ-contractive mapping f : ⟨a, b⟩ → ⟨a, b⟩, so |f(x) −
f(x′)| < |x − x′| for x ̸= x′ in ⟨a, b⟩, and we also get Theorem 3 from Edelstein’s
fixed point theorem (Theorem 2).

Example 1
Because f(x) = 1 + 1

x defined on the set ⟨1, 2⟩ is a contractive mapping, so by
Theorem 2 it has a unique fixed point u = 1 + 1

u in ⟨1, 2⟩, therefore u = φ. More-
over, for 1 = f2

f1
and 2 = f3

f2
which are ends of ⟨1, 2⟩ we get limn→∞ fn(1) =

limn→∞ fn(2) = φ. Note that the last equality can be obtained from Banach Con-
traction Principle (which follows here from Theorem 3) considering that f(x) =
1 + 1

x is a contraction on the interval
〈 3

2 , 2
〉
.
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Theorem 4
Let f : ⟨a, b⟩ → ⟨a, b⟩ be a map such that fN : ⟨a, b⟩ → ⟨a, b⟩ is ψ-contractive
for some N > 1. Then f has a unique fixed point u, and the sequence of iterates
fn(x) → u for each x ∈ ⟨a, b⟩.

Proof. The first part of the proof concerning the existence of exactly one fixed
point u = f(u) has already been presented in the paper (Barcz, 2020). Below, in
order to obtain a complete proof, we present this part with an added part showing
the convergence fn(x) → u (x ∈ ⟨a, b⟩).

Based on Theorem 3 fN has a unique fixed point u = fN (u). However
fN (f(u)) = f

(
fN (u)

)
= f(u), therefore f(u) is also a fixed point of fN . Be-

cause the fixed point of fN is only one, so f(u) = u. If for another point v = f(v),
then from fn(v) = v, n = 1, 2, . . . we have fN (v) = v, so v = u.

The convergence fn(x) → u for each x ∈ ⟨a, b⟩ is not too difficult to prove.
We will present a sketch of the proof of this fact.
Consider the sequence

(
fk(x)

)
, k = 1, 2, . . . We can choose subsequence fkN+i(x)

for i = 0, 1, . . . , N − 1 from it. For each such i we have fkN+i(x) = fkN
(
f i(x)

)
.

Since u = fN (u), so subsequences
(
fkN (x)

)
,
(
fkN+1(x)

)
, . . . ,

(
fkN+N−1(x)

)
con-

verge to u. It can be shown that fn(x) → u.

Example 2
The mapping f : ⟨1, 2⟩ → ⟨1, 2⟩ , f(x) = 1 + 1

x is not a contraction on ⟨1, 2⟩, but
its second iteration f2 is a contraction (with the constant q = 1

4 ). Therefore f2 has
only one fixed point u = f2(u) = 1 + u

u+1 in ⟨1, 2⟩, i.e. u = φ. At the same time
u = φ is the unique fixed point for f , and fn(x0) → u = φ for each x0 ∈ ⟨1, 2⟩.
So for any x0 = fk+1

fk
, where k is a fixed natural number we have x0 ∈ ⟨1, 2⟩ and

fn(x0) → φ.

Theorem 5
Let (X, d) be a complete metric space and let f : X → X be a map such that
d (f(x), f(x′)) ⩽ ψ (d(x, x′)) for all x, x′ ∈ X, where ψ : ⟨0,∞) → ⟨0,∞) is any
function satisfying the condition (i), (ii) from Definition 7 (i.e. f is ψ-contractive)
and

(iii) ψ(t) = ψ(1) · t, ψ(t+ t′) ⩽ ψ(t) + ψ(t′) for all t, t′ ∈ ⟨0,∞) .

Then f has a unique fixed point u ∈ X.

Proof. I (non-constructive) Let a = inf{d (x, f(x)) ;x ∈ X}. We prove that
a = 0. Let a > 0. For ε > 0 we choose x ∈ X such that d (x, f(x)) ⩽ a+ ε. Then

a ⩽ d
(
f(x), f2(x)

)
⩽ ψ (d(x, f(x)) ⩽ ψ(a+ ε) < a+ ε,

which leads to a contradiction as ε → 0. Therefore a = 0. By the Cantor’s theorem
we will show that this a is achieved. For this, we define the sets

Dn = {x ∈ X; d (x, f(x)) ⩽ 1
n

}, n = 1, 2, . . .
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They are non-empty and closed D1 ⊃ D2 ⊃ D3 ⊃ . . . Moreover, for x, y ∈ Dn we
have

d(x, y) ⩽ d (x, f(x)) + d (f(x), f(y)) + d (f(y), y) ⩽ 2
n

+ ψ (d(x, y)) ,

and hence d(x, y) ⩽ 2
n+ψ(1)·d(x, y) (from (iii)). So we have (1 − ψ(1)) d(x, y) ⩽ 2

n ,
therefore d(x, y) ⩽

2
u

1−ψ(1) . It follows that diam(Dn) → 0. Based on Cantor’s
theorem we get

⋂
n⩾1 Dn = {u}, and hence f(u) = u.

Proof. II (constructive) We choose any point x0 ∈ X and we create a sequence
(xn), xn = f(xn−1), n = 1, 2, . . . Then

d (xn+1, xn) ⩽ d
(
fn+1(x0), fn(x0)

)
⩽ ψ

(
d

(
fn(x0), fn−1(x0)

) )
⩽ · · · ⩽

⩽ ψn
(
d (f(x0), x0)

)
→ 0 as n → ∞.

Because

d(xn+p, xn) ⩽ d(xn+p, xn+p+1) + d(xn+p+1, xn+1) + d(xn+1, xn) ⩽

⩽ d(xn+p, xn+p+1) + ψ (d(xn+p, xn)) + d(xn+1, xn) (p ∈ N),
so we have

d(xn+p, xn) ⩽ ψ(1) · d(xn+p, xn) + d(xn+p, xn+p+1) + d(xn+1, xn),

and hence

d(xn+p, xn) ⩽ 1
1 − ψ(1) (d(xn+p+1, xn+p) + d(xn+1, xn)) → 0 as n → ∞.

So (xn) is a Cauchy sequence. Since the space X is complete, there is a point
u ∈ X such that u = limn→∞ xn. Given the continuity of f we have

f(u) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = u.

There is exactly one such fixed point. If u = f(u) ̸= f(v) = v, we get a contradic-
tion:

0 < d(u, v) = d (f(u), f(v)) ⩽ ψ (d(u, v)) < d(u, v).

Remark 3
Additionally, from d (fn(x0), u) ⩽ ψn (d(x0), u)) → 0 we obtain more than the the-
sis from Theorem 5. Namely, for every x0 ∈ X the iteration sequence (xn), xn =
fn(x0) converges to a unique fixed point u of f . Therefore, this fixed point may
be given as a limit of an iterative sequence with any (starting) point x0, i.e.
u = limn→∞ fn(x0).

Let us add that it is easy to see that the conditions (i) - (iii) of Theorem 5 are
satisfied when ψ(t) = qt, q < 1, t ⩾ 0.

Moreover, Theorem 5 is also true without assumption (iii); in this case we have
Browder’s fixed point theorem which follows from Matkowski’s fixed point theorem
(see (Dugundji, Granas, 1982)).
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3. Fixed point theorem of the Hutchinson type operator determi-
nated by the system of iterated ψ-contractive functions with
its application to the construction of fractals

Let K(X) be a family of non-empty and compact subsets of a metric space
(X, d). In the set K(X) we define the metric using the set

Aε = {x ∈ X; d(a, x) ⩽ ε for some a ∈ A},

Aε is called an ε-environment of the set A ⊂ X.
It can be shown that the function dH : K(X) ×K(X) → ⟨o,∞) given by the

formula
dH(A,B) = inf{ε ⩾ 0;A ⊂ Bε ∧B ⊂ Aε}

is metric. We call it the Hausdorff metric on the set K(X). If (X, d) is a complete
metric space, then (K(X), dH) is a complete metric space.

Let Fi : X → X, i = 1, . . . , k are functions and let a mapping F : K(X) →
K(X) be given by the formula

F (A) = F1(A) ∪ · · · ∪ Fk(A) for A ∈ K(X). (∗)

Theorem 6
If all functions Fi : X → X, i = 1, . . . , k are ψ-contractive for the same function
ψ : ⟨o,∞) → ⟨o,∞), then the mapping F : K(X) → K(X) given by the formula
(∗) is ψ-contractive with respect to the Hausdorff metric.

Proof. Since all functions Fi (i = 1, . . . , k) are ψ-contractive with the same
function ψ, so for any p, q ∈ X and i = 1, . . . , k we have d (Fi(p), Fi(q)) ⩽
ψ (d(p, q)). Let A,B ∈ K(X) and let δ = dH(A,B). Then for every p ∈ A there
exists such q ∈ B that d(p, q) ⩽ δ. Therefore for each i we have d (Fi(p), Fi(q)) ⩽
ψ (δ). It follows that Fi(A) is a set contained in the ε-environment of Fi(B) for
ε = ψ(δ). So we have F (A) =

⋃k
i=1 Fi(A) ⊂

⋃k
i=1 (Fi(B))ε = (F (B))ε. Similarly

we prove that F (B) ⊂ (F (A))ε. Therefore

dH (F (A), F (B)) ⩽ ε = ψ(δ) = ψ (dH(A,B)) .

We will further use the following

Theorem 7
(Jachymski, Gajek, Pokarowski, 2000) Let X be a topological space (not necessarily
Hausdorff), F1, . . . , Fk be continuous selfmaps of X and F be defined by

F (A) =
k⋃
i=1

Fi(A) for A ⊂ X.
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The following conditions are equivalent:

(i) there exists a non-empty compact set A0 such that F (A0) = A0

(ii) there exists a non-empty compact set A such that F (A) ⊂ A.

Theorem 8
Let F1, . . . , Fk : Rn → Rn be ψ-contractive (due to the usual metric in Rn) with
the same function ψ, and F be defined by F (A) =

⋃k
i=1 Fi(A) for each A ⊂ Rn.

Then there exists a non-empty compact set C ⊂ Rn such that

F (C) =
k⋃
i=1

Fi(C) = C.

Proof. I (without using the Hausdorff metric)
Because Fi, i = 1, . . . , k are ψ-contractive, there is a closed ball D = D(θ, r)(

θ = (0, 0, . . . , 0) ∈ Rn, r is large enough
)

such that Fi(D) ⊂ D for every i =
1, . . . , k. Therefore F (D) ⊂ D.

The set D is a closed bounded subset of Rn, so it is a compact set. Functions
Fi (1 = 1, . . . , k) are continuous, so Fi(D) are compact and hence F (D) is also
a compact set. Therefore, since F1, . . . , Fk are continuous selfmaps of Rn and
F (D) ⊂ D, so based on Theorem 7 we get the thesis.

Proof. II (using the Hausdorff metric)
Proceeding in the same way as in the above proof, we get a non-empty compact

set D, D = D(θ, r) such that F (D) ⊂ D. Thus Fn(D), n = 1, 2, . . . are compact
sets such that

F (D) ⊃ F 2(D) ⊃ F 3(D) ⊃ . . .

Hence by Kuratowski’s generalization of Cantor’s theorem C =
⋂
n⩾1 F

n(D) is a
non-empty compact set, and Fn(D) → C as n → ∞ in the sense of the Hausdorff
metric. Using the continuity of ψ-contractive F (with respect to the Hausdorff
metric) we have

F (C) = F
(

lim
n→∞

Fn(D)
)

= lim
n→∞

Fn+1(D) = C.

Moreover, since (Fn(D)) is a descending sequence, therefore due to the conver-
gence Fn(D) → C in the Hausdorff metric (limn→∞ Fn(D) =

⋂
n⩾1 F

n(D) from
Kuratowski’s generalization of Cantor’s theorem) we have

F (C) = F

 ⋂
n⩾1

Fn(D)

 =
⋂
n⩾1

Fn+1(D) =
⋂
n⩾2

Fn(D) =
⋂
n⩾1

Fn(D) = C.

It is known that (K(Rn), dH) is a complete metric space, and F defined in the
following theorem is a contraction (compare (Sękowski, 2007)), so as a conclusion
from Banach Contraction Principle we have the following
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Theorem 9
(Hutchinson’s theorem). The mapping F : K(Rn) → K(Rn) determined by con-
tractions F1, . . . , Fk of the Euclidean space Rn (with contraction constants q1, . . . , qk),
i.e. F given by the formula F (A) =

⋃k
i=1 Fi(A) for A ∈ K(Rn) has exactly one

fixed point, i.e. such a compact subset C of Rn for which F (C) = C.

We present below theorem useful in the construction of fractals.

Theorem 10
Let E be a closed subset of Rn. For ψ-contractive F1, F2, . . . , Fk : E → E (with the
same function ψ) that determine F, F (A) =

⋃k
i=1 Fi(A) for A ⊂ E there exists

exactly one non-empty compact set A0 = F (A0) =
⋃k
i=1 Fi(A0). Moreover, for

each A ∈ K(E) the iteration sequence (Fn(A)) converges to A0 with respect to the
Hausdorff metric.

Proof. Let A be a set in K(E) with Fi(A) ⊂ A for i = 1, . . . , k. (Such a set
may be the set E, if it is bounded.) Then An = Fn(A) ⊂ Fn−1(A) = An−1, n > 1.
Therefore (Fn(A)) is decreasing sequence of compact set. On the basis of Kura-
towski’s generalization of Cantor’s theorem A∗ =

⋂
n⩾1 F

n(A) is a non-empty and
compact set. Moreover

F (A∗) = F

 ⋂
n⩾1

An

 ⊂
⋂
n⩾1

F (An) ⊂
⋂
n⩾1

An = A∗.

On the basis of Theorem 7, there exists a non-empty compact set A0 such that
F (A0) = A0.

Now we will start to use Hasdorff metric. It can be shown that A0 = A∗
taking into account the convergence Fn(A) →

⋂
n⩾1 F

n(A) in the Hausdorff met-
ric. You can see that the set A0 is only one, because if there were another set
B0 = F (B0) (B0 ̸= A0) we would have a contradiction:

dH(A0, B0) = dH (F (A0), F (B0)) ⩽ ψ (dH(A0, B0)) < dH(A0, B0).

Moreover, for any A ∈ K(E) we have

dH (F (A), A0)) = dH (F (A), F (A0)) ⩽ ψ (dH(A,A0)) ,

and hence
dH (Fn(A), A0)) ⩽ ψn (dH(A,A0)) → 0 as n → ∞.

A compact and non-empty set A0 = F (A0) is called a fractal or a self-similar set
(in relation to F1, . . . , Fk).

Remark 4
If in Theorem 10 we assume that F1, . . . , Fk are contractions with constants qi,
then for q = max{q1, . . . , qk} we get Hutchinson’s theorem on the fixed point of the
map F being a contraction (see (Hutchinson, 1981), (Sękowski, 2007)).
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Here are some examples of sets that are self-similar. Examples (I)-(III) present in
turn: (I) Cantor’s set, (II) Sierpinski’s triangle, (III) the Sierpinski type carpet,
(IV) the design of the graph of a continuous function nowhere-differentiable. The
first two examples can also be found in appropriate books (for example in (Peitgen,
Jurgens, Saupe, 1992)); we present these examples to remind them and illustrate
the theory presented.

Let us add that each of the examples (I)-(III) uses a system of iterated func-
tions consisting of contractions f1, . . . , fk with the same constant q = q1 = · · · =
qk, which changes in these examples; then we use Theorem 10 taking ψ(t) = qt (e.g.
in example (I), ψ(t) = 1

3 t). In these examples we can also use Banach Contraction
Principle, because it is easy to see (based on Theorem 6) that F determined by
the respective contractions is also a contraction. However, in example (IV), not all
constants q1, . . . , qk are equal; here we use Hutchinson’s fixed point theorem (see
Remark 4).

Examples:

(I) Consider a set E = ⟨0, 1⟩ ⊂ R with a natural metric and two contractions
f1, f2 : E → E given by formulas: f1(x) = 1

3x, f2(x) = 1
3x + 2

3 . Then
F (E) = f1(E) ∪ f2(E) =

〈
0, 1

3
〉

∪
〈 2

3 , 1
〉
,

F 2(E) = f1(F (E)) ∪ f2(F (E)) =
〈
0, 1

9
〉

∪
〈 2

9 ,
1
3
〉

∪
〈 2

3 ,
7
9
〉

∪
〈 8

9 , 1
〉
, etc.

The limit set C = limn→∞ Fn(E) in the Hausdorff metric is a unique fixed
point of the mapping F , known as the Cantor set. The length of the Cantor
set is

1 − 1
3

∞∑
k=0

(
2
3

)k

= 1 −
1
3

1 − 2
3

= 0.

(II) In this example we will deal with the construction of one of the first classical
fractals, which is Sierpinski’s triangle. Let’s first consider an equilateral tri-
angle S0 with vertices (0, 0), (1, 0),

(
1
2 ,

√
3

2

)
. Consider affine transformations

f1(x, y) =
( 1

2x,
1
2y

)
, f2(x, y) =

( 1
2x+ 1

2 ,
1
2y

)
, f3(x, y) =

(
1
2x+ 1

4 ,
1
2y +

√
3

4

)
of points of this triangle and transformation F (A) = f1(A) ∪ f2(A) ∪ f3(A),
A ⊂ S0.

Applying the transformation F to S0 we get the triangle S1 = F (S0) =
f1(S0) ∪f2(S0) ∪f3(S0) (see Figure 1(a)). Now applying the transformation
F to the result obtained, we get S2 = F 2(S0) = f1(S1) ∪f2(S1) ∪f3(S1) (see
Figure 1(b)). The result of continuing this procedure will be the triangles
S1, S2, S3, . . . , Sk, . . . obtained by removing the triangle in the middle of each
larger triangle, whereby S1 ⊃ S2 ⊃ S3 ⊃ · · · ⊃ Sk ⊃ . . . , where Sk =
F k(S0), k = 1, 2, . . . There is a unique set S = F (S) which is a self-similar
set called the Sierpinski triangle, and F k(S0) → S (k → ∞) with respect to
the Hausdorff metric.
It is worth calculating the area and perimeter of the Sierpinski triangle.
Since in each subsequent step we remove 1

4 of the whole we will have 3
4 of

the previous area; hence in the second step
( 3

4
)2 of the area of S0 will remain.
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(a) (b)

Figure 1

It is easy to check that in the n-th step there will be
( 3

4
)n of the area of S0.

So the area of the Sierpinski triangle is equal to 0. Moreover, it can be shown
that this triangle has an infinite perimeter.
It is worth adding that the Sierpinski triangle can also be made from Pascal’s
triangle by coloring its odd numbers block. Note that there is also a relation-
ship between the Pascal triangle and Fibonacci numbers.

(III) Sierpinski added one more object to the set of classic fractals, namely the
Sierpinski carpet. We start its construction by dividing the unit square into
9 congruent squares from which we remove the middle one. After removing
it with the remaining squares, we proceed in the same way and continue this
procedure. The figure that we get as a result of this infinite process is the
Sierpinski carpet.
The construction of the Sierpinski type carpet that we present here differs
from the construction of the classical Sierpinski carpet. Now we first remove
the interior of the square in the lower right corner, then after dividing the
remaining 8 squares into 9 smaller squares we remove the small squares
in the lower right corners (see Figure 3). Continuing this procedure, we
approach the Sierpinski type carpet. Whereas the construction of this type
of carpet with iterated function system is shown below.
Let E = ⟨0, 1⟩ × ⟨0, 1⟩ and let E be equipped with the Euclidean metric.
Consider the operator F defined by the system of eight functions fij : E → E
by the formulas fij(x, y) =

( 1
3x+ i

3 ,
1
3y + j

3
)

for each of pair (i, j) ∈ P =
{0, 1, 2}2 \{(2, 0)}, (x, y) ∈ ⟨0, 1⟩×⟨0, 1⟩ . (compare Figure 2). Which means
that F (A) =

⋃
(i,j)∈P fij(A), A ⊂ E. The functions fij transform the unit

square E into 8 congruent smaller squares (because to get the image E1 =
F (E) we exclude everything that comes from function f20). The sequence
(En) defined recursively En = F (En−1) (n ⩾ 1), E0 = E will converge to
the set D = F (D), which is the Sierpinski type carpet.

(IV) In 1861 K. Weierstrass gave an example of a real continuous function defined
on an interval that has no derivative at any point.
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Figure 2

Figure 3: The second stage of the construction of the Sierpinski type carpet

There are many examples of such functions. Below we will present an exam-
ple based on the use of the iterated function system, and we will get a graph
of a continuous function nowhere-differentiable, which is a self-similar set.
Let E = ⟨0, 1⟩ × ⟨0, 1⟩. In E we have the Euclidean metric. We define three
functions fi : E → E which are contractions:

f1(x, y) =
(

x

3 ,
3
4y

)
, f2(x, y) =

(2 − x

3 ,
1 + 2y

4

)
, f3(x, y) =

(
x + 2

3 ,
3y + 1

4

)
.

Denote by F the Hutchinson operator determined on the family K(E) sets
compacted in E. Define

F (A) = f1(A) ∪ f2(A) ∪ f3(A), A ∈ K(E).

F : K(E) → K(E) is a contraction with respect to the Hausdorff metric.
Because K(E) with a Hausdorff metric is a complete space, so based on
the Hutchinson fixed point theorem (comp. Remark 4) F has exactly one
fixed point D being a compact non-empty set. Moreover, a sequence of sets
Dn = F (Dn−1) (n ⩾ 1), D0 = {(x, x) ∈ E} that are graphs of continu-
ous functions gn : ⟨0, 1⟩ → ⟨0, 1⟩ converges to D, while the limit function
g = limn→∞ gn is defined by its graph, which is a self-similar set D. The
function g is continuous and has no derivative at any point (its graph has
no tangent at any point). As already mentioned in the introduction, this
example of a nowhere-differentiable function graph differs from the exam-
ple from (Katsuura, 1991), because the contraction system {f1, f2, f3} used
here is different.



Fixed point theorems of contraction type mappings... [41]

Figure 4: The set D3 which is the graph of the function g3 and one of the stages
of constructing the function nowhere differentiable
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