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Abstract. During the Renaissance, the theory of algebraic equations de-
veloped in Europe. It is about finding a solution to the equation of the
form

anxn + . . . + a1x + a0 = 0,

represented by coefficients subject to algebraic operations and roots of any
degree. In the 16th century, algorithms for the third and fourth-degree equa-
tions appeared. Only in the nineteenth century, a similar algorithm for the
higher degree was proved impossible. In (Cardano, 1545) described an al-
gorithm for solving third-degree equations. In the current version of this
algorithm, one has to take roots of complex numbers that even Cardano did
not know.
This work proposes an algorithm for solving third-degree algebraic equations
using only algebraic operations on real numbers and elementary functions
taught at High School.

1. Introduction

Solving algebraic equations was already taken up in the Renaissance period.
Such equations have appeared in various practical issues, particularly in optimiza-
tion problems. The problems leading to higher degree algebraic equations appear,
for example, in metallurgy. In the case of a first-degree equation, the situation is
simple. The equation

ax = b (1)
is just solved with the help of the following formula:

x = b

a
.
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Through algebraic operations on coefficients, one determines its solution. In other
words, it is enough to find a solution in the smallest field containing a and b. It
is important because the formula gives a general procedure. But in the situation
when the second power occurs, it is not so simple. In secondary schools, second
degree algebraic equations are considered, i.e. equations like

ax2 + bx+ c = 0, (2)

where a, b, c are constants. The solution is limited to the reduction of the left side
of equation (2) to a canonical form, i.e. to the following one:

ax2 + bx+ c = a

(
x+ b

2a

)2
− ∆

4a, (3)

where ∆ = b2 − 4ac. However, solving the equation requires finding a number
that, when squared, will give this discriminant. Seeking this number, one needs
to go beyond algebraic operations. We are just looking for an element in the field
K(

√
∆). The general scheme, therefore, requires introducing a new function – the

square root.
Similarly, the expression of a higher degree

anx
n + . . .+ a1x+ a0,

can be reduced to a canonical form by arranging the polynomial with respect to
the variable x+ an−1

nan
. We then get the following expression:

an

(
x+ an−1

nan

)n

+Qn−2

(
x+ an−1

nan

)
,

where Qn−2 is a polynomial of max. n−2 degree. In the case of n = 2, it is enough
to solve the equation. In the case of n ⩾ 3 , it is not enough to solve the equation,
but it slightly simplifies the problem. When starting to look for a solution of a
higher-degree equation after reducing it to a canonical form and dividing it on
both sides by an the problem is reduced to solving the following equation:

xn + pn−2x
n−2 + . . .+ p1x1 + p0.

It is needless to say we are interested in the so-called elemental solution, i.e.,
the solution obtained from the coefficients of the equation using only algebraic op-
erations and root extraction. There are no such algorithms for fifth or higher-degree
equations. Such formulas exist for third and fourth-degree equations, provided that
it is possible to go beyond the real numbers.

In the Renaissance, there were attempts to find solutions for higher degree
equations. Tartaglia and Cardano did it for third-degree equations, and Ferrari - for
fourth-degree equations. To find a general method, one would need to find formulas
that do not change with the permutation of elements. Lagrange (Lagrange, 1770–
1771) was the person who dealt with this problem introducing the concept of
the resolvent equation. The problem is that the theory went no further than the
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fifth-degree equation because its resolvent was of the sixth degree. Today we have
the Abel- Ruffini theorem, and we know that there is no formula based on four
algebraic actions and root extraction, and there cannot be one. Using the so-called
special functions can be a new course of action. In 1858 Hermite (Hermite, 1842)
showed the possibility of solving a fifth-degree equation through elliptical integrals.

The article aims to present an algorithm for solving third-degree equations
based on the method taught in secondary schools. Complex numbers are not in
the curriculum, but trigonometric equations are. The presented algorithm applies
trigonometry. It can be used, for example, during the classes of a maths club.

2. Cardano formula

The first formulas for solving third-degree equations were derived by the Italian
mathematician Tartaglia (this is a nickname, meaning “Stammerer” in Italian),
but they were published by another Italian mathematician Geronimo Cardano
(Cardano, 1545), thus being called the Cardano’s formulas today. Let us consider
the equation

x3 + px+ q = 0. (4)

Based on the considerations of the previous chapter, it can be deduced that any
equation of degree after changing the variables is transformed to such an equation.
We are looking for the root of equation (4) in the form of

x = u− p

3u (5)

for some real number u. Based on the formula for the cube of the sum, it turns
out that

x3 =
(
u− p

3u

)3
= u3 − 3u2 p

3u + 3u p2

(3u)2 − p3

(3u)3 = u3 − pu+ p2

3u − p3

27u3 .

Putting the formulas for x and x3 to equation (4) and reducing similar expressions,
we obtain the equation

u3 + q − p3

27u3 = 0.

Multiplying equation (4) both sides by u3 and introducing a new variable z = u3

we obtain the equation

z2 + qz − p3

27 = 0 (6)

called the resolvent (Latin: resolvo - solve) or the solving equation of equation (4).
This is an ordinary quadratic equation, in case of which the number of solutions
depends on the value of the discriminant (4). If the discriminant is positive, the
roots are expressed by the formula

z1,2 = −q ±
√

∆
2 = −q

2 ±
√
q2

4 + p3

27 .
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Recall
z1z2 = −p3

27 . (7)

Formula (7), i.e. Viete’s formula, will also be important for further considerations.
The roots of equation (4) will thus have the form

xi = 3
√
zi − p

3 3
√
zi

= 3
√
zi + 3

√
− p3

27zi
, i = 1, 2.

It is not difficult to notice that after inserting formula (7) into the last formula,
we obtain the equality

x1 = x2 = 3
√
z1 + 3

√
z2,

meaning, we obtain one root of equation (4) by doing so. When all formulas are
combined, it is expressed by the formula

x1 =
3

√
−q

2 −
√
q2

4 + p3

27 +
3

√
−q

2 +
√
q2

4 + p3

27 . (8)

This is the Cardano’s formula in question. In this way, in the case when the
discriminant of equation (6) is non-negative, we can determine the root of the
equation (4). However, if the discriminant is negative, this procedure goes away.
Such a case is referred to as “casus irreducibilis”.

3. More about Cardano formulas

The reasoning presented above, however, does not take care of everything.
Cardano’s formula allows us to determine one solution to the equation (4). But
is it the only one? Based on the reasoning presented in the previous chapter, it
appears that it is the only one among the numbers that can be represented in the
form (5). Nevertheless, is it possible to present every real number in this manner?
This is the case when p ≥ 0 (Figure 1)

Whereas for p < 0, p < 0, the only values of x that can be represented in
such a form are numbers from the interval (−∞, 2√

3
√

−p]∪ [ 2√
3
√

−p,∞), i.e. those
meeting the inequality

x2 ≥ −4
3 p. (9)

(Figure 2) In this situation, using the fact that x0 satisfies equations (4) and (9),
let us perform the following calculations

x3 + px+ x = x3 + px+ q − x3
1 − px1 − q = x3 − x3

1 + p(x− x1)
= (x− x1)(x2 + xx1 + x2

1) + p(x− x1) = (x− x1)(x2 + x1x+ x2
1 + p).

After reducing the quadratic polynomial to canonical form, we obtain equation

x3 + px+ q = (x− x1)
((

x+ 1
2x1

)2
+ 3

4x
2
1 + p

)2
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Figure 1: Graph of the function x = u− p
3u for p > 0

Figure 2: Graph of the function x = u− p
3u for p < 0

In case of a sharp inequality in the formula (9), based on that, x1 is the only
root of the equation (4), since the quadratic polynomial which is a divisor of the
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left-hand side of (4) does not have zeroes. However, when

x2
1 = −4

3 p (10)

besides x1, there is also a double root equal − x1
2 . However, then there is the

equality
0 = x3

1 + px1 + q = −4
3 px1 + px1 + q = −1

3px1 + q,

i.e.
1
3px1 = q.

After squaring both sides and inserting (10), we obtain the equality

−4
3 · 1

9p
3 = q2,

and this means that the discriminant of the resolvent is equal to zero.

Summing up, if the discriminant of equation (6) is positive, equation (4) has
one solution expressed by equation (8), while if this discriminant is zero, the equa-
tion has a single root equal to −2 3

√
q
2 , and a double root equal to 3

√
q
2 . Finally, it

is necessary to consider a situation where the discriminant is negative.

4. Casus irreducibilis

If the discriminant of equation (6) is negative, it has no real roots and, con-
sequently, equation (4) has no roots which can be presented in the formula (5),
which, however, does not exclude it from having roots. We will use trigonometric
functions as a tool to create an algorithm. Let us first recall the formula which, as
it will turn out, will determine our success. This is the triple-angle cosine formula,
i.e

cos 3φ = 4 cos3 φ− 3 cosφ.

We will look for the root of equation (4) in the form x = ρ cosφ, where ρ will be
some real number. The equation (4) then takes the form

ρ3 cos3 φ+ pρ cosφ = q (11)

Now, one can see what needs to be done. Find a ρ such that ρ3 and pρ would be
proportional to 4 and −3, respectively, i.e., solve the equation

− 3ρ3 = 4pρ. (12)

Clearly, ρ = 0 satisfies this equation, but this does not lead to a solution, except
in the trivial case where q = 0. When we assume that ρ ̸= 0, the equation takes
the form

ρ2 = −4
3p
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It is important to note that this equation has roots, because the discriminant of
the equation (6) can only be negative if p is negative. Thus, the non-zero roots of
equation (12) can be 2√

3
√

−p and − 2√
3
√

−p. Since ρ cosφ = (−ρ) cos(π − φ), it
can be assumed that

ρ = 2√
3

√
−p.

By inserting the last equality into equation (11), we obtain the equation

8
3
√

3
p
√

−p cos3 φ− 2√
3
p
√

−p cosφ+ q = 0

Dividing the equation on both sides by 2
3

√
3p

√
−p we obtain the equation

4 cos3 φ− 3 cosφ = 3
√

3q
2p√−p

,

i. e.
cos 3φ = 3

√
3q

2p√−p
.

This equation has a solution if and only if its right-hand side belongs to the interval
[−1, 1]. This means that the square of this expression is less than or equal to one,
i.e.

27q2

−4p3 ≤ 1.

The last formula is nothing but an inequality

∆(6) ≤ 0,
which is something we assumed at the beginning of this chapter. Of course, we are
interested, in the situation when the discriminant is negative. In such a case, one
can find such an angle ψ that

cosψ = 3
√

3q
2p√−p

. (13)

Based on the properties of trigonometric functions, we know that the set of solu-
tions of equation (13) has the following form

{ψ + 2kπ : k ∈ Z} ∪ {−ψ + 2kπ : k ∈ Z},

therefore the set of roots for equation (4) has the form{
2√
3

√
−p cos

(
1
3ψ + k

2π
3

)
: k ∈ Z

}
∪
{

2√
3

√
−p cos

(
−1

3ψ + k
2π
3

)
: k ∈ Z

}
.

We know that the cos function is even and periodic with the period 2π. Having
considered that, the set presented above is actually equal to{

2√
3

√
−p cos

(
1
3ψ
)
,

2√
3

√
−p cos

(
1
3ψ + 2π

3

)
,

2√
3

√
−p cos

(
1
3ψ + 4π

3

)}
.
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We still have to determine its number of elements. In order to do this, we will
check when two of the three formulas define the same number. In order to do this,
it is sufficient to solve the equation

cos
(
α+ 2π

3

)
= cosα. (14)

Putting as α in order 1
3ψ, 1

3ψ + 2π
3 , 1

3ψ + 4π
3 we keep all the values α for which

the set of roots has less than three elements. So let’s do the calculation

cos
(
α+ 2π

3

)
− cosα = −2 sin

(
α+ π

3

)
sin π3 .

The equation (14) is thus satisfied when sin
(
α+ π

3
)

= 0, that is

α = −π

3 + kπ, k ∈ Z.

After successively inserting 1
3ψ, 1

3ψ+ 2π
3 for α, it turns out that must be an integer

multiple of , that is, cosψ ∈ [−1, 1].
But this means that 27q2

4p3 ≤ 1, meaning ∆(6) = 0. Based on that, when ∆(6) <

0, the equation (4) has three different real roots.

5. Conclusion

By using this method, we can find the solution of the equation (4), depending
on the value of the discriminant of the equation (6). Specifically:

1. When ∆(6) > 0, the equation (4) has one element expressed by the formula
(8) i. e.

x1 =
3

√
−q

2 −
√
q2

4 − p3

27 +
3

√
−q

2 +
√
q2

4 − p3

27

2. When ∆(6) < 0, the equation (4) has three different roots equal to

•
x1 = 2√

3
√

−p cos
(

1
3ψ
)

•
x2 = 2√

3
√

−p cos
(

1
3ψ + 2π

3

)
•

x3 = 2√
3

√
−p cos

(
1
3ψ + 4π

3

)
,

respectively, where ψ is such that cosψ = 3
√

3q
2p

√
−p
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3. When ∆(6) = 0 the equation (4) has a single root equal to

x1 = −2 3

√
q

2

and the double root
x2 = 3

√
q

2 .
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