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Abstract. The paper is a commentary to the Polish translation of the Ele-
ments Book II, included in this volume. We focus on relations between figures
represented and not represented on diagrams and identify rules which enable
Euclid to bridge these two kinds of objects. Also, we argue that the main
mathematical problem addressed in Book II is constructing a leg of a right-
angled triangle, given its hypotenuse and the other leg. In proposition II.14,
Euclid solves it through the construction called the geometric mean. We
trace the problem in Book III and beyond the Elements: in Heron’s Metrica,
Descartes’ La Géométrie, and modern foundations of mathematics. We show
that Descartes, by novel interpretation of the Pythagorean theorem, provides
a modern solution to this problem.

1. Overview of Book II

1.1. Visible and invisible figures

Book II consists of two definitions and fourteen propositions. The first defini-
tion introduces the term parallelogram contained by, the second – gnomon.1

Same as triangle and circle, gnomon refers to an individual figure featured on
a diagram. Parallelogram contained by is the context-sensitive term. It may refer
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1All English translations of the Elements after (Fitzpatrick, 2007). Occasionally we modify
Fitzpatrick’s version by skipping interpolations, most importantly, the words related to addition
or sum. Still, these amendments are easy to verify, as this edition is available on the Internet and
also provides the Greek text of the classic Heiberg’s edition (Heiberg, 1883). As regards diagrams,
we also rely on Heiberg’s edition. (Saito, 2011) replicates diagrams from Greek manuscripts of
Book II. They are not as different to those from Heiberg’s edition to undermine our interpretation.
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to a figure represented (visible) or not represented on a diagram (invisible). That is
a new phenomenon with no analog in Book I, which discusses only visible figures.2

To elaborate, all parallelograms considered as contained by are rectangles. And
indeed, rectangle contained by (τὸ περιεχὸμενον ὀρθογὠνιον ὺπό) and its twin term
square on (τετράγωνον απὀ) are basic concepts of Book II. Let start with the latter.
Proposition I.46, introducing it, constructs a square on a given line segment. Square
on is an abbreviation of the phrase ‘square described on the line’, say AB. At times
the square on AB is represented on the diagram accompanying a proposition, other
times, the diagram includes only the line AB. A square featured on a diagram
is set apart from other lines by capital letters located next to its vertices. In
a proposition, it is denoted by these four letters, or letters designating a diagonal,
or as the square on AB. A square not represented on a diagram is named solely as
a square on. It is easy to complete it, so the absence of respective sides is seemingly
motivated by a diagrammatic economy.

Rectangles on diagrams are bordered by letters placed next to their vertices.
In the text, they are named by these letters, or letters standing on diagonals, or
as rectangles contained by, then names of sides containing a right angle follow.
Usually the term rectangle contained by is shortened to contained by or simply
one-word by. However, this term also refers to contiguous line segments. Such an
object can not be featured on a diagram at all. Euclid seeks to demonstrate that it
is equal to some figure featured on the diagram. That is the substance of problems
addressed in propositions II.1–8.

To illustrate this naming technique and its relation to visible and invisible
figures, let us turn to proposition II.2 (see Fig. 1). Therein, the square ADEB is
also called the square AE, as well as the square on AB. The rectangle AF is also
called the rectangle (contained) by AD, AC. Euclid claims that it is equal to the
invisible rectangle contained by AB, AC.

Figure 1: Elements, II.2.

2Ken Saito’s (Saito, 2004) introduced the term invisible figures. It was explored further by
Leo Corry’s (Corry, 2013). In Appendix II, we present rules relating visible and invisible figures.
One may view them as a next step in the study of invisible figures.
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While naming squares by vertices or diagonal letters is a convention, the term
square on links-up with an implicit rule concerning area, namely

X = Y ⇒ X2 = Y 2,

where X2 stands for the square on the line X.
With rectangles, similarly, naming by letters on a diagonal or as contained by

lines containing a right angle is a convention. Yet, the term rectangle contained by
is related to the following (implicit) rule

X.Y & Y = Z ⇒ X.Y = X.Z,

where symbol X.Y stands for rectangle contained by line segments X, Y containing
a right angle, while lines X, Z are contiguous. A diagram features the rectangle
X.Y , yet, the rectangle contained by X, Z is invisible. The following argument
exemplifies this rule “And AF is the rectangle contained by BA, AC. For it is
contained by DA, AC, and AD is equal to AB”. In symbols

AF = DA.AC & AD = AB ⇒ AF = BA.AC.

In Appendix II, we present implicit rules relating visible and invisible figures.
To our knowledge, it is the first try to unravel that strange relationship. The
problem of visible-invisible figures finds its final solution, we believe, through the
modern axioms for commutative rings. Yet, we are not developing this thread. It re-
quires a separate study. Let us just note that contemporary accounts of the Euclid
system underestimate that problem. Here is how, for example, Robin Hartshorne
views Book II: “In Book II, all of the results make statements about certain figures
having equal content to certain other, and all of these are valid in our framework”
(Hartshorne, 2000, p. 203). He defines the figure as follows: “A rectilinear figure (or
figure in short) is a subset of the plane that can be expressed as a finite nonover-
lapping union of triangles” (Hartshorne, 2000, p. 196). However, Euclid’s invisible
figures are not subsets of Euclid’s plane. They also do not meet Euclid’s definitions
of the figure, Book I, def. 14, 19, which applies but to visible figures.

1.2. Three groups of propositions

We identify three groups of propositions in Book II: II.1–8 are lemmas, II.9–10
exercise use of the Pythagorean theorem, II.11–14 provide substantial results by
combining lemmas and the Pythagorean theorem.

Although Elements is considered an epitome of the axiomatic derivation of
propositions, II.1–8 do not meet this stereotype. Surprisingly, they all start with
relations based on visual evidence rather than axioms or previous results. Proofs
of II.9–10 apply I.47, II.11–14 start with one of II.4–7. Thus, II.9–14 fulfill, more
or less, current rigors of deduction.

1.3. Starting from visual evidence. II.1–8

In this section, we go through propositions II.1–8. They share the same general
pattern, namely: starting from an obvious relation spotted in a figure represented
on a diagram, Euclid finds a similar one but rephrased in terms of invisible figures.
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II.1 starts with equality between rectangles (named by letters on diagonals)
featured on the accompanying diagram: “BH is equal to BK, DL, and EH”. Its
conclusion consists of equality of invisible figures: rectangles contained “by A and
BC is equal to by A and BD, by A and DE, and, finally, by A and EC” (see Fig. 2).

A
B D E C

G
F

K L H

Figure 2: Elements II.1.

Below we present it in a more schematic form, following the convention that
symbol A.BC stands for the phrase “rectangle contained by A,BC”.

BH = BK, DL, EH

...

−→ A.BC = A.BD, A.DE, A.EC.

The above scheme, to emphasize the visible-invisible relationship, represents
only the starting point and conclusion while skips in-between argument.

The proof, thus, begins with self-evident equality between rectangles, which
rests on the dissection of BH into BK, DL, EH. The conclusion concerns invisible
objects. They inhabit a domain where dissection plays no role.

Schemes of proposition II.2,3, similarly, start with equations between visible
rectangles: “AE is equal to the AF, CE” (II.2), “AE is equal to the (rectangle)
AD and the (square) CE” (II.3). Their conclusions involve invisible rectangles
characterized as contained by and squares (see Fig. 3).

AE = AF, CE

...

−→ AB.BC, BA.AC = AB2.

AE = AD, CE

...

−→ AB.BC = AC.CB, BC2.

In II.4, the visually obvious assertion occurs at the end of the proof. From
the logical perspective, it is the starting point of that argument. Like in previous



Decoding Book II of the Elements [43]

A C B

D F E DF E

A C B

Figure 3: Elements II.2 (left) and II.3 (right).

schemes, we focus on the relation between visible and invisible figures. The phrase
“HF, CK, AG, and GE are the whole of ADEB, which is the square on AB” refers
to figures represented on the diagram. The following one “the square on AB is
equal to squares on AC and CB, and twice the rectangle contained by AC and
CB” – to not represented (see Fig. 4).

A C B

H G K

D F E

Figure 4: Elements II.4.

HF, CK, AG, GE = ADEB = AB2

...

−→ AB2 = AC2, CB2, 2AC.CB.

Diagrams II.1–3 are pretty simple. They represent dissections of rectangles and
squares. II.4, additionally, includes a diagonal. As we proceed further, enriched
with dashed circle-like lines identifying gnomons, they get more complicated.

Euclid defines gnomons as follows: “And for any parallelogrammic figure, let
any one whatsoever of the parallelograms about its diagonal, (taken) with its two
complements, be called a gnomon”. To give an example, in Fig. 5, the gnomon NOP
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on the left consists of the square DHMB plus rectangles CLHD and HGFM .
A modern reader could view it also as a difference between the squares CEFB
and LEGH. Strangely enough, for Euclid, these two options are not equivalent –
we detail it in section §2.1 below discussing axiom Common Notions 3.

Figure 5: Elements II.5 (left) and II.6 (right).
Proofs II.5, 6 are substantially the same in terms of the role of gnomons (see

Fig. 5). At first, Euclid shows that a rectangle is equal to a gnomon: “the whole
(rectangle) AH is equal to the gnomon NOP”. Then, gnomon NOP taken together
with a square LEGH forms a bigger square. In II.5, “the gnomon NOP and the
(square) LG is the whole square CEFB”,

NOP, LG = CEFB.

Identical phrase and equality occurs in II.6, namely

NOP, LG = CEFD.

II.7,8 include yet more complex compositions (see Fig. 6). Here are symbolic
formulations of their theses:

AB2, BC2 = 2AB.BC, CA2 4AB.BC, AC2 = (AB + BC)2.

In II.7, squares AB2 and CB2 overlaps. Diagram II.8 does not represent neither
the square (AB + BC)2, nor the line (AB + BC).

Proof of II.7 includes the following visual argument: “the gnomon KLM, and
the square CF, is double the (rectangle) AF”,

KLM, CF = 2AF.

In II.8, the crucial step reads: “Thus, (rectangle) AG is also equal to (rectangle)
RF. Thus, the four (rectangles) AG, MQ, QL, and RF are equal to one another.
Thus, the four (taken together) are quadruple AG. And it was also shown that
the four (squares) DK, CK, GR and RN (taken together) are quadruple (square)
CK. Thus, the eight (figures taken together), which comprise the gnomon STU,
are quadruple (rectangle) AK”. In symbols

DK, CK, GR, RN, AG, MQ, QL, RF = STU = 4AK.
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Figure 6: Elements II.7, 8.

The first equality DK, ..., RF = STU is based on visual evidence. The equality
STU = 4AK is controversial. We can pair rectangles and squares as follows

(AG, CK) (MQ, GR) (RF, KP ), (QL, GR).

However, getting four copies of AK in this way, GR is counted twice. Another
option is to combine the square BN and the rectangle QL. That proof, yet, requires
a dissection combined with a translation.

A geometrical characteristic of arguments we call visual evidence is sometimes
related to dissections. In the 19th and 20th century geometry, the term dissection
referred to the decomposition of a figure as a union of non-overlapping figures that
can be reassembled into another figure.3 That technique is related to the famous
Wallace-Bolayi-Gerwien theorem.4 Euclidean dissections are quite different. They
provide separate views on the same figure: it is a simple whole, say, a rectangle,
or consists of two rectangles. Thus, one compares two aspects of the same figure
rather than two figures.

1.4. Starting from the Pythagorean theorem. II.9–10

Propositions II.9,10 do not apply visual evidence (see Fig. 7). Despite they con-
cern squares, their diagrams represent only sides of right-angled triangles. Symbolic
representations of their theses are identical,

AD2, DB2 = 2(AC2, CD2), AD2, DB2 = 2(AC2, CD2),

yet, they realize different division modes, and relate other squares.
Their proofs (tallied below in columns) exercise variations on the Pythagorean

theorem. Below we focus on the reference schemes. In II.9, the following phrases
3See (Hartshorne, 2000, chapter 22).
4See (Giovannini, 2021).
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Figure 7: Elements II.9, 10.

evoke I.47: “And the square on EA is equal to the squares on AC, CE. For angle
ACE (is) a right-angle”. In II.10, they are in an abridged form: “the (square) on
EA is equal to the (squares) on EC, CA”.

−−→
I47

AE2 = 2AC2

−−→
I47

EF 2 = 2CD2

−−→
I.47

AE2, EF 2 = AF 2

−→ AF 2 = 2(AC2, CD2)
−−→
I47

AF 2 = AD2, DB2

−→ AD2, DB2 = 2(AC2, CD2).

−−→
I47

AE2 = 2AC2

−−→
I47

EG2 = 2CD2

−−→
I.47

AE2, EG2 = 2(AC2, CD2)

−→ AG2 = 2(AC2, CD2)
−−→
I47

AG2 = AD2, DB2

−→ AD2, DB2 = 2(AC2, CD2).

These proofs do not rely on visual evidence. Yet, when we step back to propo-
sition I.47, one of its arguments is of that kind (see Fig. 8). The relevant part
reads: “Thus, the parallelogram BL is also equal to the square GB. So, similarly,
[...] the parallelogram CL can be shown, (to be) equal to the square HC. Thus, the
whole square BDEC is equal to two squares GB, HC”.

Euclid’s theory of equal figures justifies equalities of non-congruent figures like
rectangle BL and square GB, on the one hand, and rectangle CL and the square
HC, on the other. However, the equality BL, CL = BDEC, actually skipped by
Euclid, exemplifies visual evidence.

1.5. Starting from II.4–7

In the next section, discussing the main results of Book II, we focus on ref-
erences to propositions II.4,7. They form pairs such as II.11,6, II.12,4, II.13,7,
II.14,5, which share the way of cutting, let us name it the basic line.
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Figure 8: Elements I.47

Euclid’s technique of citing propositions II.4–7 is this: a specification on placing
new points on the basic line follows the phrase for since the straight-line ... has
been cut .... It can be cut in three ways: at random (unequally), in half (equally),
or a new line is added to the basic one. Finally, the thesis of the cited proposition
adopts the names of points employed in the accompanying diagram.

For example, the respective part of II.14 reads: “since the straight-line BF has
been cut equally at G, and unequally at E, the rectangle contained by BE, EF,
together with the square on EG, is thus equal to the square on GF”. While II.5
states: “For let any straight-line AB have been cut equally at C and unequally at
D. I say that the rectangle contained by AD, DB, together with the square on CD,
is equal to the square on CB”. These statements differ only in names of points; the
way G, E or C, D cut the line BF or AB is the same.

Similarly, the following phrases link II.11 and II.6: “the straight-line AC has
been cut in half at E, and FA has been added to it” (II.11). The respective phrase
in II.6 is this: “let any straight-line AB have been cut in half at point C, and let
any straight-line BD have been added to it straight-on”.

Both II.12 and II.13 share the same word pattern, namely “the straight-line
CD has been cut, at random, at point A” (II.12), “let the straight-line AB have
been cut, at random, at C” (II.4,7).

1.6. Main results. II.11–14

Book II is commonly identified with its main results – propositions II.11–
14. Indeed, II.11, the so-called golden ratio construction, is the crucial step in
the cosmological plan of the Elements. It enables the construction of the regular
pentagon, and finally, the dodecahedron. II.12,13 provide the cosine rule. They do
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not play any role in the general plan of the Elements, but have gained importance
with the development of trigonometry in early modern mathematics.5 II.14, the
squaring of a polygon, crowns Euclid’s theory of equal figures.

Proof II.11 builds on II.6. Fig. 9 presents a diagrammatic scheme of a relation
between these propositions. Grey square on the left represents “the square on half”
(II.6), on the right – “the square on AE” (II.11), given CE = EA. In this and the
next figures, we add dashed lines to the original diagrams.

A H B

F G

E

C K D

Figure 9: The scheme of application of II.6 in II.11.
The following scheme interprets the beginning of proof II.11.6 Here, the basic

line, CA, is cut in half at E and AF is added. As a result, by II.6, rectangle
contained by CF and FA and the square on AE are equal to the square on EF .

−−→
II.6

CF.FA, AE2 = EF 2

EF = EB −→ CF.FA, AE2 = EB2

−−→
I.47

EB2 = AE2, AB2

∠A = π/2 −→ CF.FA, AE2 = AE2, AB2

−−−→
CN3

CF.FA = AB2.

In this and other schemes, we adopt the following conventions (some of these
symbols we already applied):

CF.FA interprets the phrase “rectangle contained by CF, FA”
EF 2 interprets the phrase “square on [the line] EF”
→ stands for a conjunction, usually it is γάρ
−−→
II.6

signals the explicit reference to proposition II.6
CN stands for Common Notions
∠A = π/2 stands for “the angle at A (is) a right-angle”.

5In §5.1, we discus Heron’s interpretation of these propositions.
6In our schemes, we keep the original order of the letters. It happens that in the same sentence,

Euclid renames the line segment from AC to CA, etc.
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The rest of this proof could proceed like that: since CF.FA is the rectangle
FCKG, and square AB2 is the square ACDB, subtracting the rectangle ACKH
from both figures, the equality AH2 = HKDB obtains. Euclid’s actual proof does
not stop here, for he aims to show AH2 is equal to the rectangle contained by AH
and BH.7

Figure 10: The scheme of application of II.4 in II.12.
Propositions II.12–13 prove the cosine rule (in the ancient Greek disguise) for

an obtuse- and acute-angled triangle, respectively. Fig. 10 presents diagrammatic
relations between II.4 and II.12. Grey squares on the left represent “squares on the
pieces” (II.4), on the right – “squares on CA, AD” (II.12). It means that the basic
line, DC, is cut randomly, at A. Here is the scheme of the proof II.12 starting with
the application of II.4.

−−→
II.4

DC2 = AC2, AD2, 2CA.AD

−−−→
CN2

DC2 + DB2 = AC2, AD2 + DB2, 2CA.AD

∠D = π/2 −−→
I47

CD2, DB2 = CB2

AD2, DB2 = AB2

−→ CD2, DB2 = CA2, AD2, DB2, 2CA.AD

−−−→
CN3

CD2 = CA2, DB2, 2CA.AD.

Fig. 11 presents diagrammatic relations between II.7 and II.13. Grey squares
represent square on “one of the pieces” (II.7), and square on BD (II.13). In this
case, similarly, the basic line, BC, is cut at random, at D. Here is the scheme of
its proof, starting with the application of II.7.

7For schemes of complete proofs, see Appendix III.
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Figure 11: The scheme of application of II.7 in II.13.

−−→
II.7

CB2, BD2 = 2CB.BD, DC2

−−−→
CN2

CB2, BD2 + DA2 = 2CB.BD, DC2 + DA2

∠D = π/2 −−→
I47

AB2 = BD2, DA2

AC2 = DC2, DA2

−→ CB2, AB2 = 2CB.BD, AC2.

II.14 provides the general result of the theory of equal figures as developed
in propositions I.35–45.8 In Book I, Euclid shows how to build a rectangle equal
to a given polygon. II.14 transforms a rectangle into an equal square. Thus, it is
the final stage in the train of propositions leading to the squaring of a polygon.
A reference to II.5 begins the proof. Grey squares in Fig. 12 represent “the square
on the (difference) between (equal and unequal) pieces” (II.5), and “the square on
EG” (II.14). Here, the basic line, BF , is cut in half at G, and E is a random point
between G and F .

Below is the crucial part of the proof II.14 in a schematized form.

−−→
II.5

BE.EF, GE2 = GF 2

GF = GH −→ BE.EF, GE2 = GH2

∠E = π/2 −−→
I47

GH2 = GE2, EH2

−→ BE.EF, GE2 = GE2, EH2

−−−→
CN3

BE.EF = EH2.

8See (Błaszczyk, 2018).
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Figure 12: The scheme of application of II.5 in II.14.

2. Patterns

2.1. Following the pattern of references

We already showed that in propositions II.11–14, Euclid refers to previous
theorems through the way of cutting of the basic line. Owing to that pattern, we
can reveal the use of II.5 in III.35 and II.6 in III.36. Indeed, III.37, the reverse of
III.36, is indispensable in constructing the regular pentagon. Therefore, Book II
turns out to be the vital stage in Euclid’s construction of Platonic solids.

In section §4.1 below, we discuss proofs III.35,36 with some extra analytic
tools, namely an interpretation of Common Notions and a characteristic of II.14
in terms of difference of squares.

2.2. Division modes of line segment

This section systemizes observations on how Euclid cuts the basic line, let
name it AB. He employs three modes of division (cutting). Line AB is cut

(a) at random (II.2, 3, 4, 7, 8, 12, 13),

(b) in half at C and D is placed between C and B (II.5, 9, 14); we refer to this
case by the following notation AC = CB, C − D − B,

(c) in half at C and the line BD is added to AB (II.6, 10, 11); we refer to this
case by the following notation AC = CB, C − B − D.

Names of points in the same mode can differ. In II.11, the line AC is cut in
half at E, and AF is added. In II.14, BF is cut in half at G, and E is placed
between G and F .
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In section §4.3, we present a hypothesis that modes (b) and (c) derive from
a relationship discovered in proposition III.36, currently known as a power of
a point with respect to a circle. Cutting a line in half relates to the diameter
and its center. Then one considers another point lying on the diameter, or its
prolongation, outside the circle.

A division mode, being tied to an individual proposition, encodes a specific
relationship between squares and rectangles, as exemplified in the previous section.
Below, we pair propositions per the division of the basic line.

(a) II.4, 12; II.7, 13,

(b) II.5, 14; II.9, 14,

(c) II.6, 11; II.10, 11.

Interestingly, pairs II.9,14 and II.10,11 also share the same mode of division,
and indeed II.9,10 provide the basis for alternative proofs of II.14,11 respectively.
In Appendix I, we base the justification of the thesis of II.14, EH2 = BCDE, on
II.9, instead of II.5.

Furthermore, modes (b), (c) are applied in Book III and seem more effective
than (a). In section §4, we show that (b) is the fundamental mode, as it is related
to the basic geometric problem addressed in Book II.

2.3. Basic geometric scheme

Proposition II.11 and III.36 play a crucial role in Euclid’s construction of the
regular pentagon. In section §4, we show that derivation of II.11 and III.36 require
only I.47, II.14, and Common Notions. Therefore, from the logical perspective,
II.14 is the crucial result of Book II. Moreover, in Appendix I, we show how to
derive II.14 from II.9. Adopting that line of derivations, II.11 and II.14 depend on
visual evidence as much as I.47 does.

Problem II.14 consists of finding a line h such that the square h2 is equal to
a given rectangle BCDE. Owning to II.5, Euclid transforms it into finding sides
of a right-angled triangle with hypotenuse c and leg a such that

BCDE + a2 = c2.

We may view the main problem addressed in Book II as a constructing a leg
of a right-angled triangle with a hypotenuse c, given another leg, a,

h2 + a2 = c2.

Euclid pays no attention to uniqueness questions, yet we can show that only
one h satisfies the above equation. In other words, right-angled triangles with
congruent two sides (freely chosen) are congruent.

Modern solution to this problem is as simple as it can be,

h =
√

c2 − a2.
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For the first time, it was applied in 1637 by Descartes,9 so how Greeks dealt
with it?

The solution given in II.14 seemingly consists of constructing the geometric
mean

√
(c + a)(c − a). Thus, still informally[√

(c + a)(c − a)
]2 = c2 − a2.

However, proposition III.35 does not support that interpretation. One can view
it as solving that problem for two pairs of lines simultaneously. Still, in modern
terms, in III.35, Euclid seeks to show that b2 − a2 = d2 − c2 (see Fig. 13 and
Fig. 17). When differences of squares are allowed, that equality follows from I.47
applied to right-angled triangles with hypotenuse d and c (see Fig. 13),

c2 − a2 = h2 = d2 − b2.

Then, by finding the geometric mean for the left and right side, namely

(b + a)(b − a) = (d − c)(d + c),

one gets the desired solution.10 Yet, Euclid’s actual solution does not apply a dif-
ference of squares and the geometric mean construction. Instead of II.14, he refers
to I.47, II.5, and Common Notions 3.

Figure 13: Basic problem of Book II.

The problem phrased in modern terms seems simple, in the Elements is com-
plicated. It is because Euclid does not subtract squares. In other words, formula
like c2 − a2 finds no counterpart in the Elements. Therefore, from the Greek per-
spective, the basic problem of Book II consists of finding h such that h2 + a2 = c2,
although from the modern perspective, it is equivalent to finding h such that
h2 = c2 − a2.

Fig. 14 illustrates the procedure of finding h presented in II.14. It also rep-
resents the grey gnomon c2 − a2, equal to the grey rectangle. From the modern
perspective, construction II.14 is a squaring of the grey rectangle, as well the grey
gnomon. From Euclid’s perspective, a gnom is only a mean for squaring a rectangle.
Therefore it occurs only in lemmas II.5–8.

9See §6.2 below.
10See §4.1 below for proof of III.35 by this method.
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Moreover, a justification of a solution to the main problem has to apply Euclid’s
means. The following identity reveals the crucial difference between the modern
and ancient approach regarding the discussed problem

(c + a)(c − a) = c2 − a2.

In the modern framework, it is evident, in ancient, does not occur. We can
view it as equality between rectangle (c + a)(c − a) and gnomon c2 − a2, yet for
Greeks, a gnomon is never the difference of squares.11

Figure 14: Finding h such than h2 + a2 = c2.

3. Preliminary interpretations

3.1. Common Notions 1 to 3

Propositions II.11,14 include references to Common Notions. It is a group of
five axioms applicable in geometry and arithmetic. In geometry, they apply both
to congruence and equal area. Here are the first three:

(CN1) “Things equal to the same thing are also equal to one another.”

(CN2) “And if equal things are added (προστεθῇ) to equal things then the wholes
are equal.”

(CN3) “And if equal things are subtracted from equal things then the remainders
are equal.”

These are, arguably, kind of foundational rules. Algebra seems to provide nat-
ural tools to interpret them. However, in modern geometry, algebra applies only
to a system with a measure of figures. In other words, it applies to geometric ob-
jects through real numbers. Since Euclid’s geometry develops without numbers, we

11See §3.2 for further discussion.
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need to restrain the straightforward use of algebra. Below formalization is based
on Euclid’s practice captured in schemes of propositions II.1–14 included in Ap-
pendix III.

(CN1) A = C & B = C ⇒ A = B.

(CN2) A = B & C = D ⇒ A + C = B + D.

(CN3) A, C = B, C ⇒ A = B.

CN1 accounts for the transitivity of congruence or equal areas.
CN2 allows adding squares to squares, or rectangles, or gnomons, or rectangles

contained by, or rectangles to gnomons, etc. Therefore it is used quite freely. The
provisos A = B and C = D mean congruence or equal area. The only implicit
restriction on the uses of CN2 is dimensional homogeneity, meaning: do not add
figures to line segments or solids to figures.

On the received reading of CN3, it enables subtracting less from greater.12

In our formalization, it gets a more restricted form of the cancellation rule. The
difference makes the substance of our reading of Book II.

Propositions II.11,14 apply CN3 clearly as the cancellation rule. It is also
a crucial rule in the theory of equal figures in Book I. Then, it takes a slightly
more liberal form, namely

(CN3’) A, C = B, C ′ & C ≡ C ′ ⇒ A = B.

This means it enables the cancellation of congruent figures, not only the same
figure. In that form, it is used in I.43.

In a more abstract perspective, we could also consider the following version

(CN3”) A, C = B, C ′ & C = C ′ ⇒ A = B.

It enables the cancellation of equal figures.

3.2. A piece in an alternative history of mathematics

In modern geometry, subtracting less from greater is an obvious move, is there
a reason, then, for other restrictions on subtraction in the Euclid system? The
analysis of Euclid’s propositions, specifically our diagrams of his proofs, motivates
our interpretation of CN3. But it also drives to the problem of finding a leg of
a right-angled triangle given hypotenuse and another leg.

To elaborate, suppose, r2 = s2 +x2, where x, s are legs and r – the hypotenuse
of a right-angled triangle (see Fig. 15).13 Can one get from it to the formula x2 =
r2 − s2? Explicitly, it is the difference between less and greater. However, for some
reason, it finds no counterpart in Euclid’s text. Neither expression nor sentence
exemplifies this formula. Our schemes of propositions from Book II also attest the
observation that Euclid does not consider a difference of squares described on sides
of a right-angled triangle.

12See, for example, (Mueller, 2006), or (De Risi, 2021).
13Fig. 15 is taken from Van der Waerden’s (Van der Waerden, 1961) and illustrates his inter-

pretation of Euclid’s II.14. We will discuss it at the end of this section.
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Let us go beyond mere observation and try to answer why Euclid does not
refer to a difference of squares. Let start our guesses with a system that allows
such differences, for example, high school geometry.14

The arithmetic of real numbers makes the algebraic background of this system.
It enables to turn the Pythagorean equality r2 = s2 + x2 into r2 − s2 = x2. Now,
there are two possible geometric interpretations of this difference. The first is the
square described on the side

√
r2 − s2, the second is a gnomon. The first solution

can not be universally applied. It is possible – for example, on a Hilbert plane – that
the Pythagorean formula, r2 = s2 + x2, makes sense, yet, the other, r2 − s2 = x2,
does not.15 So it requires further scrutiny.

The arithmetic sense of the formula
√

r2 − s2 relies on the completeness of
real numbers since the existence of the square root is proved through that axiom.
Its geometric substance rests on Euclid’s construction II.14. More to the point,
r2 − s2 is a real number, say h, therefore the construction consists of finding

√
h

by straightedge and compass. To this end, textbooks in geometry apply Descartes’
interpretation of II.14, or his geometric interpretation of the formula

√
r2 − s2.16

Regarding the difference r2 − s2, high school geometry does not provide any
geometric insights. It is justified by the rules of an ordered field, as a difference of
two numbers.

An interpretation of r2 − s2 as a gnomon refers to a diagram rather than the
completeness of real numbers. Turning to Euclid’s II.5 and II.14, one can discern
gnomon NOP and its twin figure in II.14 – the square GF 2 minus the grey square
– as a difference of squares (see Fig. 5, 12, and 14 respectively). In Euclid’s
approach, gnomon NOP is formed by CN2 rather than subtraction. Here is the
related part of II.5.

AC = CB −−→
I.36

CM = AL

−−−→
CN1

AL = DF

−−−→
CN2

AL + CH = DF + CH

−→ AH = NOP.

Still in II.5, adding the square LH2 to both sides of the equation AH = NOP ,
Euclid completes the gnomon NOP to the square CB2. The conclusion equates
the rectangle AKHD plus the square LH2 and the square CB2.

In II.14, the same relation (modulo new names of points) is the starting point,
namely

rectangle BCDE + grey square = GF 2.

14We choose this model because of the grounding assumption of Victor Blåsjö’s defense of the
so-called geometrical algebra interpretation of Book II. It reads: “The Greeks possessed a mode
of reasoning analogous to our algebra, in the sense of a standardized and abstract way of dealing
with the kinds of relations we would express using high school algebra” (Blåsjö, 2016, 326).

15See §6.2 below.
16See §6.1 for Descartes construction of

√
h, or §6.3 for his interpretation

√
r2 − s2.
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The proof proceeds further by I.47 as follows: the square GF 2 equals GH2,
and the other represents the sum of squares

rectangle BCDE+grey square = GF 2 = GH2 = EH2+GE2 = EH2+grey square.

Finally, by CN3,
rectangle BCDE = EH2.

The crux of II.14, thus, consists of relating the rectangle BCDE with the
square on leg EH. To put it metaphorically, the square GF 2 mediates between
the rectangle BCDE and the squares on the sides of the triangle GEH. That is
Euclid’s actual proof.

An alternative proof could rest on the result established in II.5

rectangle BCDE = gnomon (GF 2 − grey square).

Now, the question is whether the gnomon GF 2 − grey square can mediate
between rectangle BCDE and squares on the sides of the triangle GEH. To this
end, one should know that

EH2 = GH2 − GE2 = GH2 − grey square.

It does not follow from I.47. In Euclid’s proof, the square on the hypotenuse is
not dissected into two squares. Yet, a proof of the Pythagorean theorem by a dis-
section is possible.17 Ancient mathematical traditions like Babylonian, Chinese,
Hindu, or Arabic knew only that way of proving. Euclid’s I.47 is unique in terms
of the technique involved.

In sum, gnomon interpretation of r2−s2 trips us over far beyond the framework
of Euclid’s system, specifically his proof of the Pythagorean theorem.

Figure 15: Van der Waerden’s Fig. 32.
We can turn now to Van der Waerden’s interpretation of II.14. He identifies

this proposition as “the construction of the mean proportional x =
√

ab, by means
of a semi-circle as illustrated in Fig. 32”. And that is how he sums up its proof:
“Euclid’s proof of the proposition x2 = ab proceeds as follows:

x2 = r2 − s2 = (r − s)(r + s) = ab.

We see the ‘Theorem of Pythagoras’ r2 = x2 + s2, is applied here” (Van der
Waerden, 1961, 118).

17The most suggestive in this context seems Bhaskara’s proof; see (Hartshorne, 2000, p. 218).
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This supposed proof has nothing to do with Euclid’s actual proof. Nevertheless,
let us decode it as it stands. The equality (r − s)(r + s) = ab adds no information,
as it simply denotes the rectangle with sides a, b by different letters. The equality
r2 − s2 = (r − s)(r + s), justifiable by high school algebra, makes no sense within
the Euclid system. It equates the rectangle (r−s)(r+s) with an unspecified figure:
a difference of squares or a gnomon. Finally, Van der Waerden does not explain
how to derive the equation x2 = r2−s2 from the Pythagorean formula r2 = x2+s2.
It is not self-evident. On some Hilbert planes, such derivation is invalid. Therefore,
we have to get certain why the Euclid system allows such an argument.

In sum, from the perspective of credibility with the text of the Elements,
Van der Waerden’s interpretation is ill-informed. Mathematically it is uninformed.
Regarding academic standards, incomplete, for it does not explain how to process
the formula r2 = s2 + x2 into x2 = r2 − s2.

4. Beyond Book II

4.1. Proposition III.35. Euclid’s and alternative proofs

In Book II, one can identify the use of II.5 and II.6 through a division mode of
the basic line. The same is with propositions in Book III. In III.35, Euclid refers
to II.5 as follows: “since the straight-line AC is cut equally at G, and unequally
at E, the rectangle contained by AE, EC, and the square on EG, is thus equal to
the (square) on GC”. In symbols,

AG = GC, G − E − C −−→
II.5

AE.EC, GE2 = GC2.

Figure 16: Elements III.35 (on the left), III.36 (in the middle and on the right).



Decoding Book II of the Elements [59]

The proof drives to conclusion AE.EC = BE.ED (see Fig. 16). It proceeds
by applying Common Notions and I.47 like that :

AE.EC, GE2 = GC2 −−−→
CN2

AE.EC, GE2 + GF 2 = GC2 + GF 2

GE2, GF 2 = EF 2

GC2, GF 2 = FC2

FB2 = FC2 −−−→
CN2

AE.EC, EF 2 = FC2 = FB2

−−−→
CN3

AE.EC, EF 2 = FB2.

Next, II.5 applied to the line BD produces similar result

BE.ED, EF 2 = FB2.

Finally,

−−−→
CN1

AE.EC, EF 2 = FB2 = BE.ED, EF 2

−−−→
CN3

AE.EC = BE.ED.

Euclid’s proof is long and tiresome. It applies subtraction in the CN3 version
and all throughout reiterates I.47. Note, however, that III.35 justifies a general
rule regarding rectangles contained by, namely18

X = Z & Y = W ⇒ X.Y = Z.W.

Below we present an alternative proof that applies a difference of squares and
represents it by a geometric mean. Instead of two chords, we take a chord and the
diameter through the point E – a supposed intersection of chords (see Fig. 17).

Figure 17: From the geometric mean to III.35
The right-angled triangle FGC realizes the pattern described in section §2.3.

Thus,
GC2 − GE2 = FC2 − EF 2.

18In III.35, AC and BD are chords of a circle. To prove this rule, we need a geometric obser-
vation to the effect that lines X + Y and Z + W make chords.
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The difference of squares GC2 − GE2 is equal to rectangle AE.EC. Similarly,
FC2−EF 2 is equal to DE.EB. Therefore, the desired equality AE.EC = BE.ED
easily follows

AE.EC = EH2 = GC2 − GE2 = FC2 − EF 2 = EK2 = BE.ED.

By relating a chord with the diameter through E, we can set the measure of
any rectangle contained by line segments determined by the cutting the chord at
the point E. Each of them is equal to EK2.

The above proof, combined with Euclid’s original argument suggest yet an-
other alternative proof of III.35. This one builds on II.14. In Fig. 17, we represent
geometric means of AE, EC and BE, ED – these are red lines EH and EK. By
II.14

AE.EC = EH2, DE.ED = EK2.

By I.47 we obtain
FC2 = EK2 + EF 2,

and in addition, noting that GC = GH, we get

FC2 = GC2 + GF 2 = GH2 + GF 2 = EH2 + GE2 + GF 2 = EH2 + EF 2.

Thus,
EH2 + EF 2 = EK2 + EF 2.

By CN3, EK2 = GH2, which gives the thesis of III.35.

4.2. Proposition III.36. Euclid’s proof and through III.35

In proposition III.36, Euclid seeks to show the equality DC.DA = DB2 (see
Fig. 16). Its proof begins with a characteristic of a division mode: “since the
straight-line AC is cut in half at point F, let CD have been added to it”. Then,
II.6 is applied: “the (rectangle contained) by AD, DC and the (square) on FC is
equal to the (square) on FD”. In symbols

AF = FC, D − C − F −−→
II.6

AD.DC, CF 2 = FD2.

When the line DA goes through the center of the circle, the proof is short and
simple:

FC = FB

FD2 = DB2, FB2 −→ AD.DC, FB2 = DB2, FB2

−−−→
CN3

AD.DC = DB2.

In the second case, E is the center of the circle. Then, the basic line AC is cut
in the same way as in II.6: “the straight-line AC is cut in half at point F, let CD
have been added to it. Thus, by AD and DC plus the (square) on FC is equal to
the (square) on FD”.
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The scheme of the starting point is logically the same as in the previous case
and employs identical letters

AF = FC, D − C − F −−→
II.6

AD.DC, CF 2 = FD2.

The justification that follows is a long and tiresome reiteration of I.47. Below
we present an alternative proof. It is based on II.14 and re-shapes III.36 as a variant
of III.35, as follows

Figure 18: III.36 by III.35.

DC.DA = DC.CL

By III.35
DC.CL = HC.CK.

By II.14
HC.CK = DB2.

The last equality follows from the fact that we can construct a right-angled
triangle with the leg CE congruent to △DBE.

4.3. Seeking a rationale for division modes

Division modes applied in proposition II.5,6 seem haphazard. Viewed from
the perspective of III.36, they find a rationale. Fig. 19 represents three versions of
III.36 depending on the relationship between the line AB and the radius AE. In
each case, the equality holds

AB2 = FCKG.
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Moreover, in each case, the proof is the same, given the result of III.36,
namely19

AB2 = NB.LB = FC.AF = FCKG.

Therefore, we can view the division mode (c) as modeling the relationship
discovered in III.36: line AC is cut in half at E and line AF is added. Since Euclid
derives III.36 from II.6, he possibly reached this mode by reverse engineering.

Figure 19: Three versions of III.36: AB = AE, AB = 2AE, and AB > 2AE.

We can also consider variants of III.36 with the line parallel to the diame-
ter AC going through the point L (see Fig. 20). Then, projecting L on AC, we
gain the relationship discovered in II.14. More specifically, by III.36, the equality
AH2 = HL.HN obtains. Since AH = GL, HL = AG = FG, and HN = GC, we
can make over this result as the thesis of II.14, namely20

HN.HL = AH2 = GL2 = AG.GC = FKCG.

Again, one can view the division mode (b) as modeling the relationship dis-
covered in this specific variant of III.36: the line AC is cut in half at E, and G is
placed between A and E.

4.4. Beyond visual evidence

Alternative proofs and speculations of this section aim to reveal the fundamen-
tal role of proposition II.14 and the division mode (b) it exploits when viewed from
a logical perspective. Thus, III.35 follows from II.14. Then, III.36 is a particular
case of III.35. Next, II.11 follows from III.36.

19Points F, B, C, N can be shown to lie on a circle, thus, by III.35, NL.LB = F E.EC. Adding
to NB line LB, and AF to CF , by the same argument, we get NB.LB = F C.AF .

20Within Euclid’s framework, equality like AG.GC = HL.HN requires substitution rule or
some extra arguments. In geometries with an arithmetic of line segments, such as Descartes’ or
Hilbert’s, the rule if a = c, b = d, then a · b = c · d is provable.
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Figure 20: From III.36 to II.14.

We can build yet another net of logical dependencies which omits II.14’s re-
liance on II.5. In Appendix I, we show how to derive II.14 from II.9. Since the
proof of II.9 is based solely on I.47, that set of results relies only on visual evi-
dence involved in the proof of I.47 (see §1.4 above).

Euclid’s actual train of derivations begins with II.5 and 6. Yet, the inclusion
of II.9 in the content of Book II suggests an alternative justification of the regular
pentagon construction.

5. Beyond the Elements

5.1. Heron’s numerical interpretation of II.12,13

Heron’s Metrica (Schöne, 1903) is a study on measurement of plane figures
that applies a unit square (μονάς) to approximate areas of triangles, polygons,
ellipses, circles. In that process, line segments, represented by natural numbers,
are multiples of a unit line (μονάς).

In proposition I.8, Heron derives his famous formula for the area of a triangle
(ἐμβαδόν), △ for short. We can explain that feat as follows

△△ = s2r2 = sabc,

or
△ =

√
sabc, (1)

where a, b, c, and r are introduced through Fig. 21. Since the half of the perimeter of
the triangle, marked by s, is given by the following equations s = GC = a + b + c,
numbers a, b, c can be determined by s and sides of the triangle as follows a =
s − (b + c) = s − BC, etc.

Although formula (1) has only numerical sense, to justify it, Heron applies all
the means of geometry Euclid develops in Books I to VI.21

21See (Błaszczyk, 2021a, §8).
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Figure 21: Heron, Metrica I.8 (modified: lower-case letters added).

In propositions I.5,6, Heron examines a triangle, given numerical measures of
its sides. In this case, yet, he seeks the area of a triangle by determining its height.
To this end, he adopts a numerical interpretation of Euclid’s propositions II.12,13,
and I.47. Regarding an acute-angle triangle, Euclid’s II.13, let us recall, brings in
the equation (see Fig. 22):

AC2, 2BC · BD = AB2, BC2.

Since in Heron’s framework AB, AC, and BC are numbers, he implicitly turns
Euclid’s proposition into the following formula

AC2 + 2BC.BD = AB2 + BC2. (2)

In the next step, owing to the peculiar use of I.47, Heron determines AD,
namely AD =

√
AB2 − BD2. It is a novel motion: throughout the Elements,

Euclid does not refer to a difference of figures.
In Heron’s numerical example, AB = 13, BC = 14, AC = 15. Based on (2),

line BD equals 5. Through the formula AD =
√

AB2 − BD2, AD = 12. Then
BC · AD = 168, and finally triangle ABC is 84 of μονάδων.
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Figure 22: Heron, Metrica I.5.

6. Descartes’ interpretation of II.14

Our historical digressions spotlight the specific question addressed in Euclid’s
proposition II.14: how to find a leg of a right-angled triangle given its hypotenuse
and the other leg. Viewed from that perspective, Heron made a substantial push
towards the modern solution. Leo Corry’s (Corry, 2013) explores the reception
of Book II in the Late Antiquity, Islamic, early Latin, and medieval texts. Based
on this study, these mathematical traditions added nothing to this issue. In this
section, we portray Descartes’ innovative achievements.

In book I of La Géométrie, Descartes employs two diagrams to demonstrate
how to construct roots of the second-degree polynomials with straightedge and
compass.22 In Fig. 26, two first diagrams from the left represent La Géométrie’s
original woodcuts. The first is a remake of Euclid’s III.36, second employs a novel
geometric pattern. Descartes indicates lines which are to be positive roots of spe-
cific polynomials. In Book III, he discusses a geometric interpretation of negative
roots – negative lines of a sort. Below we do not consider negative cases. Nev-
ertheless, some lines on these diagrams represent negative roots. Then, for com-
pleteness reasons, an account should explicate sign rules, such as (−1)(−1) = 1,
(−1)(+1) = −1.23

6.1. Descartes’ arithmetic of line segments

Descartes interprets Euclid’s diagrams regularly. On the very first pages of
La Géométrie, he employs his figures VI.12 and VI.13 to introduce brand new
operations on line segments. His concept is this (see Fig 23): assuming AB = 1,
BE is the product BD · BC, and BC – the quotient BE/BD, and when FG = 1,
then GI is the square root of GH.

In Fig. 24, we represent Descartes’ ideas in modern attire. The procedure is as
follows. On the arms of an angle, lay down lines a, b, and 1. To get the product,
draw through a the line parallel to the line b, 1, for the quotient – draw through 1
the parallel to the line a, b, for the square root, find a+1

2 and follow the construction
devised in Euclid’s II.14.

22See (Descartes, 1637, p. 302–303).
23Actually, Descartes applies these rules in book III of La Géométrie; see (Błaszczyk, 2021a).
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Figure 23: La Géométrie, p. 297.

Figure 24: Descartes’ arithmetic of line segments based on proportions

Operations on line segments, such as multiplication, division, square root ex-
traction, and addition are defined in such a way, that a · b,

a

b
,

√
a, and a+1

2 are
line segments, given a, b are line segments.24

In the 17 century, it was a common practice to interpret terms such as
√

ab
or ab

c geometrically. The first stood for the geometric mean determined via II.14.
The second, rooted in I.44, for the side of a rectangle with side c and equal to the
rectangle ab. Thus, one could also base an arithmetic of line segments on results
included in Euclid’s Books I – II. Fig. 25 illustrates that alternative.25 However,
Descartes’ original arithmetic is related to Euclid’s proportions.

Proportions and similar figures (plus some of Apollonius’ observations con-
cerning tangents to hyperbola and parabola) make mathematical foundations for
Descartes’ Diotrique. In La Géométrie, he transcends Greek mathematics by turn-
ing proportions into the arithmetic of line segments according to the following
rules

a : b :: c : d ⇒ a · d = c · b, a : b :: c : d ⇒ a = c

d
· b.

24The line a+1
2 attests integers and fractions belong to the structure of line segments. Book III

testifies that this structure also includes surds. They can be determined by the second diagram,
taking, for example, a = 2, we get

√
2.

25Hilbert’s product of line segments builds on the first of these diagrams.
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Figure 25: Arithmetic of line segments based theory of equal figures

One can show that founding Descartes definitions on Euclid’s proportion, rules
such as

ab = ba, a(b + c) = ab + ac,
√

a2 = a, (
√

a)2 = a, a · 1 = a, a < b ⇒ ac < bc,

obvious for a modern reader are also valid in Descartes’ framework.26 Descartes
applies them implicitly all throughout La Géométrie.

In book III, the structure of lines expands by negative elements. Since it in-
cludes the unit line 1 and the zero 0, it is an ordered field closed under the square
root operation.

6.2. Solving equations by a difference of squares

Descartes shows how to construct solutions to the following three equations

x2 = ax + b2, x2 = −ax + b2, x2 = ax − b2,

given a and b are lines, that is, a, b > 0. The first two rely on the diagram on the
left in Fig. 26, the third – on the middle one. Descartes’ arguments are concise. He
instructs a reader on drawing a figure represented on the accompanying diagram
and states, with no further comments, that such and such line satisfies such and
such equation.

In Fig. 26, NL = 1
2 a, LM = b. As for the first equation, Descartes simply

states that
x = OM = 1

2 a +
√

1
4 a2 + b2

is the root. Indeed, one can check it by calculations (in an ordered field), namely(
1
2 a +

√
1
4 a2 + b2

)2
= a

(
1
2 a +

√
1
4 a2 + b2

)
+ b2.

26See (Błaszczyk, 2021a), or (Błaszczyk, Mrówka, 2015).
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Figure 26: La Géométrie, p. 302, 303 (on the left and in the middle), modified
Descartes’ diagram (on the right).

Taking x = PM , one gets that the line

x = PM = − 1
2 a +

√
1
4 a2 + b2

satisfies the second equation.27

Comparing the diagram and its formal description, the formula
√

1
4 a2 + b2

represents the hypotenuse NM , that is

NM =
√

1
4 a2 + b2.

Descartes’ arithmetic justifies this trick.28

Let us turn to the second diagram. It is designed to solve the third equation.
That is how Descartes carries out the construction: “I make NL equal to 1

2 a and
LM equal to b [...] draw MQR parallel to LN, and with N as a center, describe
a circle through L cutting MQR in the points Q and R; [...] the line sought, is
either MQ or MR” (Descartes, 2007, 14).

First, let us try to determine MQ applying Euclidean technique. Given
LM ⊥ LN , by III.36, the equality LM2 = RM.MQ obtains, or, by
II.14, LM2 = RM.MQ = SU.UL (see Fig. 26, the diagram on the right).

27In Descartes’s arithmetic, we can turn it into the equation x2 + ax = b2. Victor Blåsjö
presents just discussed Descartes’ solution as a special case of Euclid’s VI.29; see (Blåsjö, 2016,
p. 338). Van der Waerden provides virtually the same interpretation of VI.29. He finds it as
a solution of the problem xy = F, x − y = 2a. It is reduced to finding the roots of the equation
x(2a + x) = b2, given F = b2; see (Van der Waerden, 1961, p. 122). The equation x2 + ax = b2

can be rephrased in terms of areas. However, if Euclid had sought the roots of these equations,
III.36 would do.

28See (Błaszczyk, 2021a) for further discussion.
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Given RM = a − x, MQ = x, both propositions enable one to encode the
problem b2 = (a − x)x not the solution, that is, a formula for x.29

To outline Descartes’ solution, let additionally assume b < 1
2 a. We read off

from the diagram the following equalities

QM = UL = 1
2 a − UN.

Now, Descartes states that these lines

x = MQ = 1
2 a −

√
1
4 a2 − b2, x = MR = 1

2 a +
√

1
4 a2 − b2

satisfy the equation
x2 = ax − b2.

Figure 27: Solving the equation x2 = ax − b2 by II.14.
Let us focus on the first solution and the right angle triangle NUQ. Like in

the previous cases, comparing the diagram and its formal description, the formula√
1
4 a2 − b2 represents the leg NU ,

NU =
√

1
4 a2 − b2.

In this sense, Descartes identifies the leg of a right-angled triangle by a differ-
ence of squares.

Euclid’s II.14 enables one to determine the line NU . Yet, to this end, one
needs a separate construction – for example, the one represented in Fig. 27 in red.
Viewed in that context, NU is the geometric mean, namely

NU =
√(a

2 − UQ
)(a

2 + UQ
)

=
√(a

2 − b
)(a

2 + b
)
.

29H. Bos (Bos, 2001, p. 305) claims that Euclid’s III.36 suffice to solve Descartes’ first equation,
x2 = ax + b2. Yet, by III.36 he can only encode the problem, not determine its solution. While
discussing Descartes’ solution, he even does not explain how to transform x(x − a) = b2 into
x2 = ax + b2 within Euclid’s framework.
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The square on NU is represented as a rectangle

NU2 = (a

2 − b
)(a

2 + b
)
.

There are no means in Euclid’s system to turn ( a
2 − b

)(
a
2 + b

)
into difference

of squares 1
4 a2 − b2.

Modern mathematics, as well as school mathematics, adopts Descartes’ solu-
tion.

7. Modern interpretations of Book II

7.1. History of mathematics

Leo Corry’s (Corry, 2013) is a thorough study of Book II and its reception in
Islamic and medieval mathematics. It also summarizes the debate over the so-called
geometric algebra interpretation of Book II as follows: “In 1975 Sabetai Unguru
published an article in which he emphatically criticized the geometric algebra
interpretation. He claimed that Greek geometry is just that, geometry and that
any algebraic rendering thereof is anachronistic and historically misguided. [...]
Unguru’s view became essentially a mainstream interpretation accepted by most
historians. Unguru’s criticism has since stood (at least tacitly) in the background
of most of the serious historical research in the field” (Corry, 2013, p. 638). Recent
papers by (Blåsjö, 2016), and (Katz, 2020) aim to undermine Unguru’s position,
yet, they base their arguments on semantic distinctions rather than new insights
into the Elements.

In this section, we pay attention to the interpretation of Book II by a renowned
historian of ancient mathematics, David Fowler. While the geometric algebra inter-
pretation overestimates Euclid’s technique, Fowler underestimates it. His (Fowler,
2003) reads: “With the exception of implicit uses of I47 and 45, Book II is virtually
self-contained in the sense that it only uses straightforward manipulations of lines
and squares of the kind assumed without comment by Socrates in the Meno. More-
over the only reference to I45, just quoted above, occurs in the last proposition,
where it is tackled on to contribute extraneous generality, out of keeping with the
style of the rest of the book. Also, it can be argued that a proof of the ‘Phytago-
ras’ theorem’ [...] has been excised from between 8 and 9. This proof, which I shall
call Proposition 8a, exploits the manipulation of gnomons, the basic technique of
Book II, and with its obliquely placed square, is reminiscent of the successful third
Meno; so the proof also conforms in style with the testified ingredients of early
Greek mathematics” (Fowler, 2003, p. 70).

In Plato’s Meno, the slave-boy is to guess a side of a square that is twice as big
as a given square. Due to Socrates’ hint – it is Socrates, who draws a diagonal, al-
though Plato barely mentions it – the boy finds out that the diagonal is the desired
solution. Since it cuts a square into equal triangles, four such triangles will make
up the given figure; see Fig. 28. However, what is self-evident for Plato, Socrates,
and the slave-boy, is a real problem for Euclid. In I.33, he shows that the diagonal
cuts a parallelogram in halves. The proof relies on I.4, with its controversial, ad
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hoc rule that two straight lines can not encompass an area.30

In Book II, indeed, some arguments rely on simple dissections. We classify
them as visual evidence. A diagonal cutting a square into halves is not of that
kind.

Figure 28: Meno’s problem.
Also, Fowler seeks to portray Book II as an epitome of pre-Euclidean math-

ematics. However, schemes of its propositions presented in Appendix II reveal
the application of the Pythagorean theorem and Common Notions, specifically
CN3. The latter also plays a role in I.43, stating that complements of a paral-
lelogram about the diagonal are equal. Let take this proposition on a Cartesian
plane over a non-Archimedean, Euclidean field, where ε is an infinitesimal, and
1/ε, consequently, the infinitely large number.31 Then, one can show that grey
squares represented in Fig. 29 – complements of the parallelogram with vertexes
(0, 0), (ε−1, 0), (ε−1, 1 + ε), and (0, 1 + ε) – are equal in Euclid’s theory, but not
by a dissection. Thus, Euclid’s theory of equal figures is not as simple as Meno’s
dissections.

Figure 29: Euclid proposition I.43 on a non-Archimedean plane.

7.2. Foundations of geometry on difference of squares

The problem of differences of squares discussed in the paper finds a continu-
ation in the modern foundations of geometry. Let us brief basic facts. Models of
Euclid’s plane are Cartesian planes over Euclidean fields, defined as closed under
the square root operation, E+ ∋ x 7→

√
x ∈ E. Models of Hilbert’s plane are

30In Hilbert system, I.4 is the axiom.
31It can be the field of hyperreals; see (Błaszczyk, 2016).
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Cartesian planes over Pythagorean fields, defined as closed under the following
operation P ∋ x 7→

√
1 + x2 ∈ P .32

The field of formal power series, F , is Pythagorean, yet it is not Euclidean.
Although x is an element of F – given it is a formal series of the form x =∑+∞

−∞ aix
i, with ai = 0 for all indexes, except a1 = 1 – the square root

√
x has no

representation in F . As a result,
√

(1 + x)2 − (1 − x)2, provided 0 < x < 1, has
no representation in F .

Moreover, let us note that the following condition provides an alternative char-
acteristic of a Euclidean field

0 < x < 1, x ∈ E ⇒
√

1 − x2 ∈ E.

Indeed, it obviously follows from the standard definition of a Euclidean field.
The reverse is due to the following observation

√
x = 1 + x

2

√
1 − (1 − x)2

(1 + x)2 .

From the logical perspective, thus, construction II.14 is equivalent to deter-
mining the difference of squares. Yet, while the axiom CN3 provides no constraints
within the framework of an ordered field, it matters within the original system of
Euclid’s geometry.

With these observations let us proceed to Robin Hartshorne’s (Hartshorne,
2000). Its chapter 5 develops Hilbert’s theory of the content of figures. Motivating
that part of his study, Hartshorne writes: “Looking at Euclid’s theory of area in
Books I–IV, Hilbert saw how to give it a solid logical foundation” (Hartshorne,
2000, p. 195). Furthermore, he claims that Common Notions 1–5 plus Halves of
equal figures are equal, and If squares are equal, than their sides are equal constitute
additional axioms. And continues “instead, following Hilbert, we will show that one
can define a suitable notion of equal area and prove its properties, thus providing
a new foundations for the theory of area” (Hartshorne, 2000, p. 196).

Viewed from the modern perspective, proposition II.14 constructs line segment√
a and enables one to square any polygon. That construction is in-feasible on

a Hilbert plane. Or, to rephrase this claim in terms of constructions with Hilbert’s
tools:

√
a can not be carried out by a ruler and transporter of line segments and

transporter of angles.33 Therefore, Hartshorne seeks to refine Euclid’s theory of
equal figures on a Euclidean plane.

The role of the so-called de Zolt’s postulate, Z in short, is the most controver-
sial issue of that project. This axiom reads: “If Q is a figure contained in another
figure P , and if P − Q has nonempty interior, then P and Q do not have equal
content” (Hartshorne, 2000, p. 201). Hartshorne finds it crucial in the reconstruc-
tion of Euclid’s theory as he writes “I.39 uses the whole is greater than the part
in its proof and so depends on (Z). Generally speaking, all of the results in which

32See (Hartshorne, 2000, p. 145).
33For a characteristic of Hilbert’s construction tools see (Hartshorne, 2000, 102). Actually,

these three devices produce the same results as a ruler and transporter of line segments.
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Euclid shows that two figures are equal will be valid for the notion of equal con-
tent. However, when a hypothesis of equal content is used to conclude something
involving congruence of segments or angels in a figure, then (Z) will be necessary.
So I.40 also depends on (Z). In I.48 Euclid says that if squares have equal content,
then their sides are equal, so this result also depends on (Z)” (Hartshorne, 2000,
p. 203).

In the next section, we present an interpretation of the axiom The whole is
greater than the part, and show that it enables to prove the supposed axiom equal
squares have equal sides.

7.3. Common Notions 5 vs de Zolt’s postulate

Euclid’s Common Notions 5, CN5 in short, reads:

CN5 “And the whole (ὄλον) [is] greater than the part (μέρους)”.

We argue that the following formula interprets this axiom, (∀x, y)(x + y > x).
Proposition II.14 will play a key role in our argument.

We interpret CN5 in a broader context of Euclid’s theory of magnitudes de-
veloped in Book V. Viewed in that context, it turns out to be equivalent to the
axiom of real numbers called compatibility of order with sums, while usually, it is
explained in terms of set theory.34

We formalize magnitudes of the same kind (line segments being of one kind,
triangles being of another, etc.) as an additive semigroup with a total order,
(M, +, <), characterized by the following five axioms:

E1 (∀x, y)(∃n ∈ N)(nx > y),

E2 (∀x, y)(∃z)(x < y ⇒ x + z = y),

E3 (∀x, y, z)(x < y ⇒ x + z < y + z),

E4 (∀x)(∀n ∈ N)(∃y)(x = ny),

E5 (∀x, y, z)(∃v)(x : y :: z : v).
The term nx is defined by nx = x + ... + x︸ ︷︷ ︸

n times

.

Total order in ancient Greek mathematics means greater-than relation. It is
primitive, i.e., non-defined, and characterized by transitivity and the law of tri-
chotomy, that is, one and only one of the following conditions obtain 35

x < y or x = y or x > y.

Greater-than relation between, for example, triangles, rather than their mea-
sures, seem odd for a modern reader. However, that is what we find already in
proposition I.6, where Euclid arrives at the conclusion that “the triangle DBC
will be equal to the triangle ACB, the lesser to the greater. The very notion (is)

34See (Błaszczyk, 2021b).
35Some studies, e.g., (Beckmann, 1967), instead of E2 adopt iff version, x < y ⇔ x + z = y

and treat it as a definition of an order. That interpretation finds no textual corroboration.
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absurd”; see Fig. 30. Here, contradiction consists of violation of the law of tri-
chotomy: △DBC = △ACB and △DBC < △ACB. The equality relies on I.4.
The inequality seems as obvious that Euclid provides no arguments.

Figure 30: Elements, I.6 (on the left) and 39 (on the right).
In I.39, similarly, given “ABC is equal to triangle EBC”, Euclid gets the con-

clusion “ABC is equal to DBC. Thus, DBC is also equal to EBC, the greater to
the lesser. The very thing is impossible”. Here, the equality △EBC = △DBC
follows from the transitivity of equality, while inequality △EBC < △DBC seems
self-evident for Euclid.

In both cases, a modern reader has to decide why a triangle is greater than
another. Indeed, both cases exemplify scheme x + y > x. More to the point, in I.6
and I.39 respectively, the following equalities are based on visual evidence

△ACB = △DBC + △DCA, △DBC = △EBC + △ECD.

Yet, the second parts of Euclid’s arguments apply CN5, namely

△DBC + △DCA > △DBC, △EBC + △ECD > △EBC. (3)

Thus, arguments related to CN5 include a reference to diagrams: it is an
equality based on simple dissection like △ACB = △DBC + △DCA. Yet CN5 is
a rule which does not rely on a diagram.36

To elaborate, we show that E3 is equivalent to formula (∀x, y)(x + y > x)
relative to E1 and E2, that is

E1, E2, E3 ⇔ E1, E2, CN5.

Secondly, that this new form of E3 interprets Euclid’s CN5.
Let start with the implication

E1, E2, CN5 ⇒ E1, E2, E3.

To show E3, suppose x < y. By E2, x + v = y, for some v, and consequently
(x+z)+v = y +z, for each z. By CN5, (x+z) < (x+z)+v. Finally, x+z < y +z.

36Vincenzo De Risi views it differently. In his interpretation, CN5 is a rule of diagrammatic
reasoning “The comparison of figures through CN4 and CN5 occurs by means of diagrammatic
inferences” (De Risi, 2021, p. 316). In short, CN5 is to turn a subset relation (“larger in content”)
read off from a diagram into a logical relation greater-than.
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Let pass to the other implication,

E1, E2, E3 ⇒ CN5.

To get a contradiction, suppose x + y ≤ x, for some x, y. By E1, ny > y for
some n. By E3, it follows that x + ny > x + y. Since x + y ≤ x, by the transitivity
of greater-than relation, we get

x + 2y ≤ x + y ≤ x.

The n-th iteration of this move gives

x + ny ≤ x + y.

In sum, x + ny > x + y and x + ny ≤ x + y. The very thing is impossible.
Note that, axioms E2, E3 and ¬CN5 are satisfied in the additive group of real

numbers (R, +, <), which means E1 is necessary to prove the above implication.
Note also that both E1 and CN5 exclude 0-magnitude, that is, a magnitude that
satisfies the following equality x + 0 = x.

We can also buttress these logical arguments by showing that Euclid’s terms
whole and part are figures of the same kind, rather than a set and its subset –
a circle inscribed in a triangle is not its part. In Book II, the term whole applies to
rectangles or squares dissected on rectangles and squares. When parts result from
a dissection of a whole like in I.6 or I.39, the symbol + interprets putting figures
next to each other, like segments lying on a line sharing one end-point. By this,
we treat figures like co-linear segments sharing one end-point.

I.47 enables more abstract interpretation. Its conclusion reads: “the whole
square BDEC is equal to two squares GB, HC”. Going back to its proof, “the
whole square BDEC”, i.e., the square on BC, is dissected into rectangles BL and
LC, which are equal to squares on AB, and AC respectively (see Fig. 8). Thus,

BC2 > AB2, BC2 > AC2.

Given a, b are legs, c the hypotenuse of a right-angled triangle, I.47 could be
formalized as a2, b2 = c2, or in a modern style, a2 + b2 = c2. It follows, on our
interpretation of CN5, that c2 > a2, although the square on c is not dissected into
squares a2 and b2.

Now, let proceed to that implicit rule applied throughout the Elements, when
squares are equal, their sides are equal,

a2 = b2 ⇒ a = b.

To get a contradiction, suppose a2 = b2 and a > b. Then, by E2, a = b + c, for
some c. By II.14, we find h such that equality holds

(b + c)2 = b2 + h2.

Applying the algebraic interpretation of CN5, we get a2 > b2. Thus, a2 = b2

and a2 > b2. The very thing is impossible.
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The above prove also shows that comparing squares reduces to comparing their
sides, that is

a > b ⇒ a2 > b2.

Since II.14 enables to square any polygon, sides of respective squares enable
to compare polygons in terms of greater-than.37

8. Final remarks

This commentary on Book II proceeds on four levels: descriptive, speculative,
mathematical, and historical. On the first, §1, Appendix II and III, we overview
the content of each proposition. That part reveals a relation between visible and
invisible figures and implicit rules that enable Euclid to start proofs with visible
figures and reach conclusions regarding invisible ones. It also unveils the role of
visual evidence in the deductive structure of Book II.

Visual evidence is a specification of a problem commonly known as the depen-
dence of inferences on diagrams. Viewed from that perspective, propositions II.1–8
rely on diagrams. These are observations related to simple dissections of squares
and rectangles.

The second level, section §4 and Appendix I, includes speculations on reducing
the reliance on diagrams to one visual argument involved in I.47. Then, the chain
of propositions crucial from the perspective of constructing the regular pentagon
is as follows:

I.47 − II.9 − II.14 − III.35 − III.36 − II.11.

In these notes, we do not address the problem of replacing the concept of
rectangle contained by. We only hint that Descartes’ and Hilbert’s arithmetic of
line segments provides a possible solution.

On the third level, sections §2–3 start mathematical interpretation of Book II.
We identify the main problem of Book II as consisting of finding a leg of a right-
angled triangle, given hypotenuse c and another leg, a, and relate it to the question
of whether Greeks applied a difference of squares.

In the historical context, we trace this problem in Book III of the Elements
and beyond. We identify the use of formula

√
c2 − a2 in the arithmetic context, in

Heron’s Metrica, and in a geometric context, in Descartes’ Geometry.
In the mathematical context, §7.2, we identify echoes of the main problem in

modern foundations of geometry. In section §7.3, we address Hartshorne’s com-
ments on Book II and prove one of the premises applied all through the Elements:
if squares are equal, their sides are equal. Our proof builds on an interpretation of
Common Notions 5 and proposition II.14. In section §7.1, we provide a counterex-
ample to Fowler’s argument relating Book II and pre-Euclidean geometry exposed
in Plato’s Meno.

37De Risi comes to a different conclusion regarding the role of CN5 in comparing figures,
as he writes: “Through superposition, we may order the figures in terms of content, by saying
that a figure is greater in content than another if it contains the other. In order to make such
a comparison, we need CN4 to say that the smaller figure, which is superposed to a part of the
larger figure, is equal in content to such a part. We then need CN5 to conclude that the larger
figure is greater in content than its part and therefore greater than the other figure” (De Risi,
2021, p. 317).
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9. Appendix I. Proposition II.14 by II.9

By II.9, we get (see Fig 31, diagram on the right)

BE2, EF 2 = 2(BG2, GE2). (4)

To simplify our argument, we set:

BG = b + a, GE = a, EF = CB = b.

With new names of line segments, the equation (4) takes the following form

(b + 2a)2 + b2 = 2(b + a)2 + 2a2.

Taking halves of the left and right side, we get

Figure 31: II.14 by II.9

(b + 2a)2

2 + b2

2 = (b + a)2 + a2. (5)

Formulas (b+2a)2

2 , b2

2 stand for triangles. By I.47, we get

(b + a)2 = a2 + HE2 (6)

From (5) and (6) it follows that

(b + 2a)2

2 + b2

2 = a2 + HE2 + a2 (7)

Triangles (b+2a)2

2 , b2

2 are equal to BCDE and two squares a2, therefore

BCDE + 2a2 = (b + 2a)2 + b2

2 . (8)

Now, the equation (7) takes the form

BCDE + 2a2 = HE2 + 2a2

Applying CN3, we get the desired result, namely

BCDE = HE2.
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10. Appendix II. Rules relating visible and invisible figures

10.1. The structure of Euclid’s proposition

The text of Euclidean proposition is a schematic composition made up of six
parts: protasis (stating the relations among geometrical objects by means of ab-
stract and technical terms), ekthesis (identifying objects of protasis with lettered
objects), diorisomos (reformulating protasis in terms of lettered objects), kataskeuē
(a construction part which introduces auxiliary lines exploited in the proof that
follows, relevant new letters are introduced in the alphabetical order), apodeixis
(proof, which usually proves the diorisomos’ claim), sumperasma (reiterating dior-
isomos). References to axioms, definitions, and previous propositions are made via
the technical terms and phrases applied in prostasis. Euclid’s proof means the
apodeixis part of a proposition.

In Appendix III, we present schemes of propositions II.1–14. They apply four
colors that correspond to three groups of rules: visual evidence (red), renaming
(blue), and substitutions: violet (substitutions to terms contained by or square on),
and magenta (substitutions to equalities). Visual evidence and renaming, already
discussed, seem quite simple and we treat them briefly. In this section, we focus
on rules regarding substitution

10.2. Visual evidence and Common Notions 4

It is a standard of Euclid studies to differentiate two meanings of equality
as applied to figures in the Elements. These are congruence and equality of non-
congruent figures. The first links with the axiom Common Notion 4 introducing the
idea of coinciding figures. Red statements in our schemes do not involve any other
concepts except equality. If any justification is needed, CN4 would be a good choice.
Yet visual evidence seems even more fundamental than the idea of coincidence
covered in CN4, for it relates two aspects of the same object rather than two
individual objects.

To elaborate, in proposition I.4, a triangle “is applied to” a triangle – in fact,
the first one covers the other one due to translation. Then, on the ground of CN4
and an uncodified, ad hoc axiom38, these triangles are to be equal. Visual evidence,
on the contrary, is related to dissections of rectangles and squares and, in principle,
does not involve translations. Nevertheless, it is not always the same, as it spans
from straight dissections (II.1–6), through overlapping figures (II.7), to a dissection
combined with a translation (II.8).

10.3. Renaming

Our schemes of Euclid’s propositions expose the role of names of figures in
analyzed arguments. Visible rectangles bear names of their vertices, diagonals,
or they are contained by two line segments. Visible squares, similarly, are named
by their vertices, diagonals, and as a square on a side. Invisible figures get only
one name: it could be a rectangle contained by, or a square on. Thus, the most

38“[T]wo straight-lines will encompass an area. The very thing is impossible” (Elements, I.4).
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important is that visible figures can also be named rectangles contained by, or
squares on. Then, due to substitution rules, they can be related to invisible ones.

In a model example, in proposition II.2 (see Fig. 1), the rectangle AF is repre-
sented on the diagram and gets the name contained by DA,AC. Segments DA,AC
are represented on the diagram and contain the right-angle. Then, Euclid states
that “AF is contained by BA, AC”, for “AD is equal to AB”. However, the diagram
does not represent the rectangle contained by BA, AC. Moreover, lines BA, AC
do not contain a right-angle. That is why, in our scheme, symbol AF π DA.AC
standing for the phrase “AF is contained by DA,AC” is in blue – it is simply a new
name for a visible figure. Nevertheless, to turn AF π DA.AC into AF π BA.AC
a substitution rule is needed, namely the rule (1) as explained in the next section.

10.4. Substitution to terms contained by and square on

There are two kinds of substitution rules applied throughout Book II: substi-
tution to the term X is contained by Y,Z, or X is square on Y, and substitution
to equality.

The first rule, denoted in violet in our schemes, is schematized by

X π Y.V & Y = U ⇒ X π U.V . (9)

Its substance is as follows: a diagram represents X and Y.V , and Y , V con-
taining a right-angle, and U , but not U.V .

The following line from the scheme of proposition II.2 exemplifies the rule (1):

AF π AD.AC, AD = AB → AF π AB.AC.

A similar rule applies to the term square on, namely

X is square on Y & Y = U ⇒ X is square on U. (10)

Here is the substance of this rule: a diagram represents the square X and its
side Y , represents the side U but not the square U2. We already exemplified it by
an argument from proposition II.4; nonetheless, it is worth of reiteration:39

HF is square on HG, HG = AC → HF is square on AC.

One may speculate whether the following rule, seemingly as evident as rule
(1),

X π Y.V & Y = U & V = Z ⇒ X π U.Z

is also in use in Book II. Euclid does not apply it: in II.4, instead of the above
rule, he refers to I.43.

39Propositions II.9, 10 exploit this rule to a great extent.
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10.5. Substitution to equality

The substitution to equality, represented in our schemes by magenta, is for-
malized by:

X = Y & X π U.W ⇒ U.W = Y . (11)

Since the relation of equality is symmetric, by applying this rule, we can also
get the following one

X = Y & X π U.W & Y π Z.V ⇒ U.W = Z.V . (12)

Thus, in proposition II.1, the starting point is this

BH = BK, DL, EH.

Then, by the rule (1), we get the following results

BH π A.BC, BK π A.BD, DL π A.DE, EH π A.EC.

Finally, by rule (4), we reach the conclusion

A.BC = A.BD, A.DE, A.EC.

When an equality is combined with the term square on, the substitution rule
takes the following form

X = Y & U is square on X ⇒ U = Y 2. (13)

That is, since the resulting term is equality, we interpret it as a substitution
to equality, namely

X = Y & U = X2 ⇒ U = Y 2.

Thus, in II.5, 6, we find the equality LG = CD2. We interpret it as a result of
the rule (5) applied to an argument (skipped by Euclid):

LG is square on LH, LH = CD → LG = CD2.

In II.14, we find the following mutation of the substitution rule

BE.EF = HE2, BDπ BE.EF → BD = HE2.

More formally
U.W = X & Y π U.W ⇒ X = Y . (14)

As an obvious realization of the rule (5) we adopt yet another rule

X = Y ⇒ X2 = Y 2. (15)

It is implicitly used throughout the Elements.
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11. Appendix III. Schemes of propositions II.1–14

Let us remind conventions we adopt:
CF.FA interprets the phrase “rectangle contained by CF, FA”
AF π DA.AC “AF is contained by DA,AC”
EF 2 interprets the phrase “square on [the line] EF”
→ stands for a conjunction, usually it is γάρ
−−→
II6

signals the explicit reference to proposition II.6
CN stands for Common Notions
∠A = π/2 stands for “the angle at A (is) a right-angle”.

II.1
Diorismos

A.BC = A.BD, A.DE, A.EC.

Apodeixis

BH = BK, DL, EH

BH π GB.BC, BG = A −→ BH π A.BC

BK π GB.BD, BG = A −→ BK π A.BD

DK = BG = A −→ DL π A.DE

−→ EH π A.EC

−→ A.BC = A.BD, A.DE, A.EC.

II.2
Diorismos

AB.BC, BA.AC = AB2.

Apodeixis

AE = AF, CE

AE is AB2

AF π DA.AC, AD = AB −→ AF π BA.AC

BE = AB −→ CE π AB.BC

−→ BA.AC, AB.BC = AB2.

II.3
Diorismos

AB.BC = AC.CB, BC2.

Apodeixis

AE = AD, CE

AE π AB.BE, BE = BC −→ AE π AB.BC

DC = CB −→ AD π AC.CB

DB is CB2 −→ AB.BC = AC.CB, BC2.
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II.4
Diorismos

AB2 = AC2, CB2, 2AC.CB.

Apodeixis

CGKB is CB2

HF is HG2, HF is AC2 −→ HF, KC are AC2, CB2

GC = CB −→ AG π AC.CB

AG = GE −→ GE = AC.CB

−→ AG, GE = 2AC.CB

HF, CK are AC2, CB2 −→ HF, CK, AG, GE =
= AC2, BC2, 2AC.CB

HF, CK, AG, CE = ADEB,

ADEB is AB2 −→ AB2 = AC2, CB2, 2AC.CB.

II.5
Diorismos

AD.DB, CD2 = CB2.

Apodeixis

−−→
I43

CH = HF

−−−→
CN2

CH + DM = HF + DM

−→ CM = DF

AC = CB −−→
I36

CM = AL

−−−→
CN1

AL = DF

−−−→
CN2

AL + CH = DF + CH

−→ AH = NOP

DH = DB −→ AH π AD.DB

−→ NOP = AD.DB

LG = CD2 −−−→
CN2

NOP + LG = AD.DB, +CD2

NOP, LG = CEFB

CEFB is CB2 −→ AD.DB, CD2 = CB2.
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II.6
Diorismos

AD.DB, CB2 = CD2.

Apodeixis

AC = CB −−→
I36

AL = CH

−−→
I43

CH = HF

AC = CB −−−→
CN1

AL = HF

−→ AM = NOP

DM = DB −→ AM π AD.DB

−→ NOP = AD.DB

LG = BC2 −→ AD.DB, BC2 = NOP, BC2

NOL, LG2 = CEFB

CEFD is CD2 −→ AD.DB, BC2 = CD2.

II.7
Diorismos

AB2, BC2 = 2AB.BC, CA2.

Apodeixis

AG = GE −−−→
CN2

AG, CF = GE, CF

AF = CE −→ AF, CE = 2AF

KLM, CF = AF, AG −→ KLM, CF = 2AF

BF = CB −→ 2AF = 2AB.BC

−→ KLM, CF = 2AB.BC

DG is AC2 −→ KLM, BG, GD = 2AB.BC, AC2

−→ KLM, BG, GD = ADEB, CF

ADEB, CF = AB2, BC2 −→ AB2, BC2 = 2AB.BC, AC2.
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II.8
Diorismos

4AB.BC, AC2 = (AB + BC)2

Apodeixis

. . . −→ DK = CK = GR = RN

DK = CK = GR = RN −→ DK, CK, GR, RN = 4CK

. . . −→ AG = MQ = QL = RF

AG = MQ = QL = RF −→ AG, MQ, QL, RF = 4AG

−→ DK, CK, GR, RN, AG, MQ, QL, RF = STU = 4AK

AKπAB.BD −→ STU = 4AB.BD

OH = AC2 −−−→
CN2

STU + AC2 = 4AB.BD + AC2

STU, AC2 = AEFD

AEFD is AD2 −→ 4AB.BD, AC2 = AD2.

BC = BD −→ 4AB.BC, AC2 = (AB + BC)2

AD2 = AB2, BC2 −→ 4AB.BC, AC2 = AB2, BC2.

In this diagram, we have omitted some tedious arguments which lead to the
obvious conclusions. This is marked by three dots sign.
II.9
Diorismos

AD2, DB2 = 2(AC2, CD2)
Apodeixis

...

AC = CE −→ AC2 = CE2

−→ AC2, CE2 = 2AC2

−−→
I47

AE2 = AC2, CE2 = 2AC2

. . . −→ EG = GF

EG = GF −→ EG2 = GF 2

−→ EG2, GF 2 = 2GF 2

−−→
I47

EF 2 = EG2, GF 2 = 2GF 2

. . . −→ GF = CD

GF = CD −→ EF 2 = 2CD2

−−−→
CN2

EA2, EF 2 = 2(AC2, CD2)

−−→
I.47

EA2, EF 2 = AF 2

−→ AF 2 = 2(AC2, CD2)
−−→
I47

AF 2 = AD2, DF 2

−→ AD2, DF 2 = 2(AC2, CD2)
. . . −→ DF = DB

DF = DB −→ AD2, DB2 = 2(AC2, CD2).
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II.10
Diorismos

AD2, DB2 = 2(AC2, CD2)

Apodeixis

. . . −→ EC = CA

EC = AC −→ EC2 = CA2

−→ EC2, CA2 = 2AC2

−−→
I47

AE2 = EC2, CA2 = 2AC2

FG = EF −→ FG2 = EF 2

−→ FG2, EF 2 = 2EF 2

−−→
I47

EG2 = GF 2, EF 2 = 2EF 2

EF = CD −→ EG2 = 2CD2

−−−→
CN2

AE2, EG2 = 2(AC2, CD2)

−−→
I47

AG2 = AE2, EG2 = 2(AC2, CD2)

−−→
I.47

AG2 = AD2, DG2

−→ AD2, DG2 = 2(AC2, CD2)
DG = DB −→ AD2, DB2 = 2(AC2, CD2).

II.11
Diorismos “[T]o cut AB such that the rectangle contained by the whole and one
of the pieces is equal to the square on the remaining piece.”
Apodeixis

... −−→
II.6

CF.FA, AE2 = EF 2

EF = EB −→ CF.FA, AE2 = EB2

∠A = π/2 −−→
I.47

AB2, AE2 = EB2

−→ CF.FA, AE2 = AB2, AE2

−−−→
CN3

CF.FA = AB2

AF = FG −→ FK π CF.FA

AD is AB2 −→ FK = AD

−−−→
CN3

FK \ AK = AD \ AK

−→ FH = HD

AB = BD −→ HD π AB.BH

FH is HA2 −→ AB.BH = HA2.

Here, the implicit equalities FK \ AK = FH, and AD \ AK = HD are based
on visual evidence.
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II.12

Diorismos
CB2 = CA2, AB2, 2CA.AD.

Apodeixis

−−→
II.4

DC2 = AC2, AD2, 2CA.AD

−−−→
CN2

DC2 + DB2 = AC2, AD2 + DB2, 2CA.AD

∠D = π/2 −−→
I47

CD2, DB2 = CB2

AD2, DB2 = AB2

−→ CB2 = CA2, AB2, 2CA.AD.

II.13.

Diorismos
AC2, 2CB.BD = CB2, BA2.

Apodeixis

−−→
II7

CB2, BD2 = 2CB.BD, DC2

−−−→
CN2

CB2, BD2 + DA2 = 2CB.BD, DC2 + DA2

∠D = π/2 −−→
I47

AB2 = BD2, DA2

AC2 = DC2, DA2

−→ CB2, AB2 = 2CB.BD, AC2.

II.14

Diorismos “[I]t is required to construct a square equal to the rectilinear figure A.”

Apodeixis

... −−→
II.5

BE.EF, GE2 = GF 2

GF = GH −→ BE.EF, GE2 = GH2

HE2, GE2 = GH2 −→ BE.EF, GE2 = HE2, GE2

−−−→
CN3

BE.EF = HE2

EF = ED −→ BD π BE.EF

−→ BD = HE2

BD = A −→ A = EH2.
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