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Abstract. This work is devoted to the application of selected fixed point the-
orems in the problems of convergence of certain sequences to the golden num-
ber. It contains the theorem about the fixed point of so-called ψ-contraction
specified on the closed interval < a, b > and the local version of Banach
Contraction Principle as a conclusion. It will also be used to approximate
the golden number.

1. Introduction

In paper (Barcz, 2019) one of the proofs of convergence of Fibonacci number
quotients to the golden number is based on Edelstein’s theorem obout the fixed
point of a mapping f(x) = 1 + 1

x of a certain interval. The presented work is
a development of the issue of approximation of the golden number using other fixed
point theorems, in particular the local version of Banach Contraction Principle.
We get this version as a conclusion from the fixed point theorem of so-called
ψ-contraction. In this work we will present the application of the local version
of the Banach Principle to show the convergence of quotients: fn+1

fn
Fibonacci

numbers fn and Gn+1
Gn

of generalizations these numbers Gn.
It is worth mentioning that the classic proofs of the Banach principle uses

a sequence of iterations (a sequence of successive approximations). The proof of
the version of the Banach principle presented here, which applies to mapping of
type ”|f(x) − f(y)| ⩽ ψ(|x− y|)”, where the function ψ meets certain conditions,
is different. We use the principle of descending intervals, and next we will obtain
the Banach principle for a contraction f on a closed interval. Because a mapping

∗2010 Mathematics Subject Classification: Primary: 11B39; Secondary: 97A30
Keywords and phrases: golden number, Banach Contraction Principle, fixed point



[32] Eugeniusz Barcz

f , f(x) = 1+ 1
x , is not a contraction on the interval < 1, 2 >, but it is a contraction

on the interval < 1 + ε, 2 >, 0 < ε ⩽ 0, 5, we use Banach Contraction Principle for
f : < 1 + ε, 2 >→< 1 + ε, 2 >.

Moreover, the fixed point of the mapping f as a consequence of its existence
for the mapping f2 = f ◦ f :< 1, 2 >→< 1, 2 > which is a contraction with the
constant q < 1 is also used to show the convergence of the quotients of neighboring
Fibonacci numbers fn.

This work and work Barcz, 2019 may have didactic value. They can be used
to highlight certain relationships connecting fixed points with the golden number,
the golden number with fractals, and fractals with fixed points. In this works
we did not discuss the relationship between the golden number and fractals, while
the relationship between fractals and fixed points of contractions is visible, for
example, in the result of the iterative procedure which is the Sierpinski triangle
— one of the first fractals. The above mentioned relationships emphasize their
numerous connections with the mathematics program in schools and colleges. They
can be developed as part of other activities, for example mathematical circles.

Topics such as the above mentioned relationships are also important and useful,
for example, in computer science and biology (where, for example, the golden
number is the key to understanding the geometry of spirals in sunflower).

2. Some fixed point theorems and their applications

Definition 1
A golden section of the segment of length d is called a division into smaller sections
of lengths x and d− x, in which

d

x
= x

d− x
.

Definition 2
For a given rectangle with side lengths in the ratio 1 : x, we will call the golden
proportion of the only ratio 1 : φ at which the original rectangle can be divided into
a square and a new rectangle which has the same ratio of sides 1 : φ.

Definition 3
The golden rectangle is called a rectangle in which the ratio of the lenght of its
sides is 1 : φ.

Definition 4
Fibonacci sequence is a sequence defined recursively as follows:

f1 = f2 = 1, fn+1 = fn−1 + fn, n ≥ 2

(sometimes formally accepted f0 = 0 and then the recursive formula is valid for
n ≥ 1).

Definition 5
Fibonacci numbers are called consecutive terms of the sequence (fn).
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Definition 6
A sequence (Fn) of the form Fn+1 = Fn +Fn−1, n ≥ 2, where F1 and F2 are given
positive integers we call a Fibonacci type sequence.

Definition 7
A generalized Fibonacci sequence is a sequence (Gn) defined recursively as follows:
Gn+1 = Gn +Gn−1, n ⩾ 2, with G1 = a and G2 = b, a, b > 0.

Theorem 1
(The principle of descending intervals) Let (∆n) be a sequence of closed intervals
such that

(i) ∆n+1 ⊂ ∆n for each n;

(ii) limn→∞ dn = 0 where dn is the length of interval ∆n.

Then
⋂∞

n=1 ∆n is a set consisting of exactly one point.

Definition 8
We say that the mapping f :< a, b >→< a, b > is ψ-contraction if it meets the
condition

|f(x) − f(x′)| ⩽ ψ(|x− x′|)

for all x, x′ ∈< a, b >, where ψ :< 0,∞) →< 0,∞) is any function such that

(i) ψ is non-decreasing and right continuous;

(ii) ψn(t) → 0 for each t > 0.

Lemma 1
(see Barcz, 1983) Let ψ :< 0,∞) →< 0,∞) be a non-decreasing function such that
ψn(t) → 0 for each t > 0. Then ψ(t) < t for each t > 0.

Theorem 2
(Bolzano) If f is a continuous and non-constant function defined on the closed
interval < a, b >, then its image f(< a, b >) is the interval < a′, b′ >.

Theorem 3
Each ψ-contractive mapping f :< a, b >→< a, b > has exactly one fixed point
(i.e. such a unique point u ∈< a, b > that f(u) = u), and fn(x) → u for each
x ∈< a, b >.

Proof. (Version 1)
It is easy to see that each ψ-contraction f :< a, b >→< a, b > is continuous.

Under Theorem 2 there is interval < a1, b1 >⊂< a, b > which is an image of
< a, b >, but the ends of < a, b > do not necessarily go into a1 and b1. There are
points x1 and x2 from < a, b > such that f(x1) = a1, f(x2) = b1. Because f is
ψ-contractive mapping, so

|a1 − b1| = |f(x1) − f(x2)| ⩽ ψ(|x1 − x2|) ⩽ ψ(|a− b|).
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Therefore f(< a, b >) =< a1, b1 >⊂< a, b > and |a1 − b1| ⩽ ψ(|a − b|). Next
f transforms < a1, b1 > into < a2, b2 >⊂< a1, b1 > and |a2 − b2| ⩽ ψ(|a1 − b1|).
Let ∆1,∆2, . . . ,∆n, . . . , where ∆n =< an, bn > be a sequence of intervals obtained
with < a, b > by applying f again. Then

|an − bn| ⩽ ψ(|an−1 − bn−1|).

Now assuming that the inequality |an−1 − bn−1| ⩽ ψn−1(|a− b|) is true for n > 1,
we will show the inequality |an − bn| ⩽ ψn(|a− b|). We have

|an − bn| ⩽ ψ(|an−1 − bn−1|) ⩽ ψ
(
ψn−1(|a− b|)

)
= ψn(|a− b|).

By induction we get
|an − bn| ⩽ ψn(|a− b|)

for each natural n. Therefore the lengths dn = |an − bn| of intervals < an, bn > go
to zero because ψn(|a− b|) → 0.
We also get a sequence of intervals

∆1 ⊃ ∆2 ⊃ ∆3 ⊃ . . .

because ∆n+1 = f(∆n) ⊂ f(∆n−1) = ∆n assuming that ∆n ⊂ ∆n−1, n > 1
(considering that ∆2 ⊂ ∆1).
Thus having regard the previous result dn → 0 (n → ∞) by Theorem 1 we get
exactly one point u belonging to all ∆n, i.e. belonging to

⋂∞
n=1 ∆n. Because

f

( ∞⋂
n=1

∆n

)
⊂

∞⋂
n=1

f (∆n) =
∞⋂

n=1
∆n = {u},

so f(u) = u, i.e. u is the unique fixed point of f .
Let us now notice that u = f(u) = f2(u) = . . . Therefore, taking any x ∈< a, b >,
for n = 1, 2, . . . we have

|fn(x) − u| = |fn(x) − fn(u)| ⩽ ψ
(
|fn−1(x) − fn−1(u)|

)
⩽

⩽ ψ2 (|fn−2(x) − fn−2(u)|
)
⩽ · · · ⩽ ψn (|x− u|) .

Because ψn (|x− u|) → 0, so fn(x) → u.
(Version 2) Let F (x) = f(x)−x and notice that F (a) ⩾ 0, F (b) ⩽ 0. It follows

from Theorem 2 that F (u) = 0 for some u ∈< a, b >, i.e. f(u) = u. The fixed
point u is unique. Indeed, assuming that f(v) = v and u ̸= v we get a contradiction
|u − v| = |f(u) − f(v)| ⩽ ψ (|u− v|) < |u − v|. Now taking any x ∈< a, b >, for
n = 1, 2, . . . we have

|fn(x)−u| = |fn(x)−fn(u)| ⩽ ψ
(
|fn−1(x) − fn−1(u)|

)
⩽ · · · ⩽ ψn (|x− u|) → 0,

so fn(x) → u.
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Before the formulation Banach Contraction Principle for contraction f (with
constant 0 < q < 1) specified on < a, b > we check whether the function ψ(t) = qt
meets the conditions (i), (ii) given in Definition 8. Checking condition (i) is not
a problem. We will show condition (ii): ψn(t) = qnt → 0 for each t > 0. For this
purpose it is enough to use the following fact, which (simple) proof we will present
for the completeness of the argument.

Fact 1
limn→∞ qn = 0 for 0 < q < 1.

Proof. The sequence (qn) meets the conditions:

1° qn+1 < qn, (n = 1, 2, . . . ), which means that the sequence (qn) is decreasing,

2° the sequence is bounded from the bottom because qn ⩾ 0 for every natural n.

Therefore on the basis of one of the theorems (of analysis) this sequence has a limit
limn→∞ qn = G. Of course (qn+1) as a subsequence of (qn) also has a limit equal
to G. Therefore

lim
n→∞

qn+1 = q lim
n→∞

qn = qG,

i.e.
G = qG.

Because q ̸= 1, so G = 0.

Therefore from Theorem 3 we get Theorem 4 which is Banach Contraction Prin-
ciple on a contraction on an interval.

Theorem 4
Each contraction f :< a, b >→< a, b > with a constant 0 < q < 1 has a unique
fixed point u. Further, for any x ∈< a, b >, the iterative sequence (fn(x)) converges
to u.

Remark 1
Obviously, one can make a direct proof of Theorem 4 similar to the second proof
of Theorem 3 (proof in version 2).

It is worth pointing out that Theorem 3 is due to J. Matkowski (see Matkowski,
1975, Theorem 1.2) and is valid in any complete metric space. Moreover, the as-
sumption about right continuity of ψ is superfluous.

Theorem 5
Let f :< a, b >→< a, b > be a map such that fN :< a, b >→< a, b > is a con-
traction for some N (f need not be continuous). Then f has a unique fixed point
u, and the sequence of iterates fn(x) → u for each x ∈< a, b > (comp. Goebel,
2005).

(We will present a proof for the completeness.)
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Proof. Based on Theorem 4 fN has a unique fixed point u = fN (u). However
fN (f(u)) = f

(
fN (u)

)
= f(u), therefore f(u) is also a fixed point of fN . Because

the fixed point of fN is only one, so f(u) = u. If for another point v = f(v), then
v = f(v) = · · · = fN (v), so v = u.

Now we want to show that for x0 ∈< 1, 2 > such that x0 = fi+1
fi

for some
i fn(x0) → φ, where f :< 1, 2 >→ R is defined by f(x) = 1 + 1

x . It turns out that
f is not a contraction of the interval < 1, 2 >. Namely |f(x) − f(x′)| ⩽ |x−x′|

xx′ ⩽
|x− x′| for x, x′ ∈< 1, 2 >.

We have f (< 1, 2 >) ⊂< 1, 2 >. Indeed, f(1) = 1 + 1 = 2, f(2) = 1 + 1
2 > 1.

Because f is decreasing function, so f (< 1, 2 >) ⊂< 1, 2 >. Therefore the second
iteration of f f2 :< 1, 2 >→< 1, 2 >, because

f (f (< 1, 2 >)) ⊂ f (< 1, 2 >) ⊂< 1, 2 > .

We will now examine whether f2 is a contraction. We have

|f2(x) − f2(x′)| ⩽ |x− x′|
1 + 1

x + 1
x′ + 1

xx′

⩽
4
9 |x− x′|

for x, x′ ∈< 1, 2 > . Therefore f2 is the contraction. By Theorem 5 f has in
< 1, 2 > a unique fixed point u, and the sequence of iterates fn(x0) → u for each
x0 ∈< 1, 2 >. Take x0 = f3

f2
= 2, then fn(2) → u. Take now x0 = f2

f1
= 1, then

fn(1) → u = φ (u = φ because u = 1 + 1
u ).

Theorem 6
Let C =< 1, 2 >. The mapping f : C → C, f(x) = 1 + 1

x , has a unique fixed point
u = φ, and limn→∞ fn

(
f2
f1

)
= φ = limn→∞ fn

(
f3
f2

)
(where f1 = f2 = 1, f3 = 2).

The notion of compactness plays an important role in Edelstein’s theorem (see
Remark 2 below). In the case of metric space (X, d) we can say that set A ⊂ X
is compact, if we can choose a convergent subsequence from each sequence of
elements in set A.

In the n-dimensional space Rn we know the following criterion of compactness:
the set A ⊂ Rn is compact if and only if, it is closed and bounded.

We will not use this criterion in the proof given below Bolzano-Weierstrass the-
orem instead we will use the principle of descending intervals to illustrate the appli-
cation of this principle other then the one presented earlier (in proof Theorem 3).
This proof is similar to other inductive proofs of this theorem.

Theorem 7
(Bolzano-Weierstrass) Interval < a, b >⊂ R is a compact set.

Proof. We will prove that for any sequence (xn) of points in this interval,
we can choose the subsequence (xnk

) converging to the point (x0) of this interval.
We have the sequence (xn), xn ∈< a, b >⊂ R. Let’s denote ∆0 =< a, b >. Divide
∆0 into two equal parts ∆′

0, ∆′′
0 . Because at least one of them contains infinitely
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many terms of the sequence (xn), so marking it by ∆1 we choose the term xn1

contained in this part and denote y1 = xn1 . We divide ∆1 in half again and
again from part ∆2 containing an infinite number of the terms choose xn2 and
denote y2 = xn2 . By proceeding so we get a descending sequence of the following
intervals: ∆0,∆1,∆2, . . . with lengths going to zero (because the length dk of ∆k

is equal to b−a
2k ). Each ∆k contains the term yk = xnk

of the sequence (xn). By
the principle of descending intervals, there is exactly one point x0 belonging to all
∆k, (k = 0, 1, 2, . . . ), and in particular to < a, b >. The convergence yk to x0 is
obvious.

This theorem will be useful in the following considerations in Remark 2 about the
convergence of the sequence

(
fn+1

fn

)
to the golden number.

Remark 2
Work (Barcz, 2019) presents the theorem on the convergence of the sequence of
quotients fn+1

fn
and it has been shown that limn→∞

fn+1
fn

= φ using the Edelstein
fixed point theorem which says that : if X is a compact metric space and f : X → X
is a mapping such that

d (f(x), f(y)) < d(x, y) for all x ̸= y, (∗)

then f has exactly one fixed point, and the iterative sequence (fn(x)) converges to
the fixed point.

In work (Barcz, 2019), the interval C =< 1, 2φ−1 > with the metric d(x, y) =
|x−y| was considered. On the basis of Bolzano-Weierstrass theorem C is a compact
space. The mapping f : C → C, f(x) = 1 + 1

x , satisfies condition (∗) of Edelstein’s
theorem. Let’s add that fn(x0) → φ, where x0 = f2

f1
= 1 (see Barcz, 2019).

Let us now consider the problem of the existence of a limit of the sequence
(

fn+1
fn

)
on the basis of Theorem 4.

Since f(x) = 1 + 1
x is not a contraction on the interval < 1, 2 >, we will

consider this mapping on the closed interval C =< 1 + ε, 2 >, where 0 < ε ⩽ 0, 5.
Mapping f , f(x) = 1 + 1

x , meets conditions:

1° f(C) ⊂ C because f is decreasing and f(1 + ε) < 2, f(2) = 1, 5 ⩾ 1 + ε

2° for every x, x′ ∈ C

|f(x) − f(x′)| = | 1
x

− 1
x′ | = |x− x′|

xx′ ⩽
|x− x′|
(1 + ε)2 ,

therefore
|f(x) − f(x′)| ⩽ q|x− x′|, where q = 1

(1 + ε)2 < 1.

Based on Theorem 4 f has a unique fixed point u ∈< 1+ε, 2 >. Because u = 1+ 1
u ,

i.e. u2 − u − 1 = 0, so u = φ, and the iteration sequence fn(x0) → u, where
x0 = f3

f2
= 2. Therefore we received the following



[38] Eugeniusz Barcz

Theorem 8
Let C =< 1+ε, 2 >. The mapping f : C → C, f(x) = 1+ 1

x , is a contraction , and

lim
n→∞

xn = lim
n→∞

fn(x0) = φ, where xn = fn+1

fn
= 1 + 1

xn−1
, x0 = f3

f2
= 2.

Let us remind that the generalized Fibonacci sequence (Gn) is defined as follows

G1 = a,G2 = b (a, b > 0), Gn+1 = Gn +Gn−1 (n > 1).

Let C =< 1 + a
b , 2 > and b

a ⩾ 2.
Note that the mapping f specified on C by the formula f(x) = 1 + 1

x has an
image f(C) ⊂ C. Indeed, f

(
1 + a

b

)
= 1 + b

a+b < 2, f(2) = 1 + 1
2 ⩾ 1 + a

b (because
b
a ⩾ 2) and f is decreasing. In addition, f is a contraction with the constant q < 1,
because we get

|f(x) − f(x′)| = |x− x′|
xx′ ⩽

|x− x′|
(1 + a

b )2 and q = 1
(1 + a

b )2 < 1.

Therefore we get the convergence fn(x0) → φ for any x0 ∈ C.
So for x0 = G3

G2
= 1+ a

b , i.e. for the begining of the interval C we have the following

Theorem 9
fn
(
1 + a

b

)
→ φ, where f(x) = 1 + 1

x , x ∈< 1 + a
b , 2 >,

b
a ⩾ 2 and a, b > 0.
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