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Abstract. We discuss the role of a heuristic principle known as the Principle
of Permanence of Forms in the development of mathematics, especially in
abstract algebra. We try to find some analogies in the development of modern
formal logic. Finally, we add a few remarks on the use of the principle in
question in mathematical education.

1. Introductory remarks

Many design features of modern mathematics are rooted directly in the 19th cen-
tury. We dare to say that at that time mathematics underwent revolutionary
changes. This can be seen, among others, in: the development of abstract alge-
bra, the emergence of new systems of geometry, efforts devoted to arithmetization
of analysis on (thus abolishing intuitions related to kinematics and geometry), and
the characterizations of the most important number systems (works by Dedekind,
Grassmann, Peano, Weber, Cantor, and others). Below we focus our attention on
certain facts from the history of abstract algebra only.

It should be noticed that up to the beginning of the 19th century mathe-
maticians had certain reservations as far as the full acceptance of negative and
complex numbers was concerned. When these numbers entered calculations they
were treated as useful tools and not as fully legitimate mathematical objects. For
instance, Francis Maseres and William Frend formulated arguments against the
legitimacy of these numbers in the 17th century. Counterarguments were formu-
lated for example by John Playfair, William Greenfield, Robert Woodhouse, and
Adrien-Quentin Buée.
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Robert Woodhouse and Charles Babbage belong to the first authors who ex-
pressed the idea that algebraic expressions might not be interpreted as relating
to concrete numbers only (Woodhouse, 1803), (Babbage, 1821). Surely, there are
many further authors whose works are relevant in this respect but in this short
note we are not going to present the history of abstract algebra in general – we
limit ourselves to the role of one heuristic principle.

2. The Principle of Permanence of Forms: George Peacock and
Hermann Hankel

2.1. George Peacock

George Peacock (1791–1858) published in 1830 A Treatise on Algebra (second
edition: Peacock 1845). He presented in 1834 Report on recent progress and present
state of certain branches of analysis (Peacock, 1834) to mathematical community
at Cambridge. These works can be seen as the first which propose to treat algebra
as a symbolical science based on deductive grounds. According to Peacock’s opinion
algebra should be a science of combinations of arbitrary signs governed by definite
(though also arbitrary) rules.

Peacock distinguished arithmetical algebra from symbolical algebra. The first
was based on truths about natural numbers. The second, in turn, should contain
cognitively valuable assumptions and conventions. The arithmetical algebra was
a suggesting science for the symbolical algebra. The first begins with definitions
which determine the meaning of algebraic operations, the second begins with con-
ditions or laws concerning combinations of signs:

In arithmetical algebra, the definitions of the operations determine
the rules; in symbolical algebra, the rules determine the meanings of
the operations, or more properly speaking, they furnish the means
of interpreting them.. . .We call those rules . . . assumptions, in as much
as they are not deducible as conclusions from any previous knowledge
of those operations which have corresponding names: and we might call
them arbitrary assumptions, in as much they are arbitrarily imposed
upon a science of symbols and their combinations, which might be
adapted to any other assumed system of consistent rules. (Peacock,
1834; Detlefsen, 2005))

Peacock’s Principle of Permanence of Equivalent Forms was formulated shortly
as follows:

Whatever algebraic forms are equivalent when the symbols are general
in form, but specific in value, will be equivalent likewise when the
symbols are general in value as well as in form. (Peacock, 1845)
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The next table gives examples of laws which the principle in question takes
into account:

commutativity a+ b = b+ a, a · b = b · a
associativity (a+ b) + c = a+ (b+ c), (a · b) · c = a · (b · c)
distributivity a · (b+ c) = a · b+ a · c
exponentiation rules ab+c = ab · ac, (ab)c = ab·c, (a · b)c = ac · bc

Notice that all these laws are valid for real and complex numbers.
The development of algebraic symbolism is visible in the works of such math-

ematicians from the epoch in question as: George Boole, Augustus De Morgan,
Duncan Gregory, William Hamilton, Arthur Cayley, John Graves, Hermann Grass-
mann, William Clifford, Benjamin Pierce, Ernst Schröder. They knew Peacock’s
proposals and each of them added original ideas to the development of algebra
which is described in details in many places, for instance Kline, 1972, Kolmogorov,
Yushkevich, (Eds.), 2001, Corry, 2004. The origins of abstract algebra with special
emphasis put on the Peacock’s proposals is interestingly presented in Pycior 1981.

2.2. Hermann Hankel

A few decades after Peacock Hermann Hankel (1839–1873) also formulated a sim-
ilar principle (das Princip der Permanenz der formalen Gesetze):

Wenn zwei in allgemeinen Zeichen der arithmetica universalis ausge-
drückte Formen einander gleich sind, so sollen sie einander auch gleich
bleiben, wenn die Zeichen aufhören, einfache Grössen zu bezeichnen,
und daher auch die Operationen einen irgend welchen anderen Inhalt
bekommen. (Hankel, 1867)

It should be stressed that Hankel’s principle was formulated in different cir-
cumstances as compared to those contemporary to Peacock’s principle. Besides
such “standard” numbers as the integers, the rational and real numbers as well
as already quite well “domesticated” complex numbers also certain hypercomplex
numbers entered the stage, namely Hamilton’s quaternions (Hamilton, 1861).

Hankel wrote in the work cited above that he knew Peacock’s principle from
the report Peacock 1934 and admitted that he did not read either Peacock’s Trea-
tise on Algebra (Peacock, 1845) or De Morgan’s On the Foundations of Algebra
(De Morgan, 1842). He referred to the short paper by Duncan Gregory On the
Real Nature of Symbolical Algebra (Gregory, 1840). Hankel criticized Cauchy’s
remarks concerning complex numbers and highly appreciated two works by Her-
mann Grassmann: Die lineale Ausdehnungslehre (Grassmann, 1844) and Lehrbuch
der Arithmetik für hohöre Lehranstalten (Grassmann, 1861). Hankel discussed also
the works by Hamilton devoted to complex numbers and quaternions.

After a concise description of properties of arithmetical operations on inte-
gers (including the iterated exponentiation: aa, a(aa), a(a(aa)), and so on) Hankel
provided his definition of the number concept:
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Die Zahl ist der begriffliche Ausdruck der gegenseitigen Beziehung
zweier Objekte, soweit dieselbe quantitativen Messungen zugänglich
ist. (Hankel, 1867)

Hankel declared further in the text that after geometrical interpretation of
numbers of the form a+ b

√
−1 and arithmetical operations on such numbers they

should no longer be considered as impossible: they obtained the same reality as
positive and negative integers.

Hankel considered his principle as fundamental in his algebraic considerations
called by him Formenlehre (the study of forms):

Es hat die Formenlehre nicht allein den engen Zweck, die gewöhnliche
arithmetica universalis mit ihren ganzen, gebrochenen, irrationalen,
negativen und imäginaren Grössen zu erläutern und streng zu de-
duciren, sondern sie erweist sich mit ihrem Principe der Permanenz
zugleich als eminent fruchtbar für den ganzen Organismus der Mathe-
matik. (Hankel, 1867)

In addition to this declaration Hankel wrote that his Formenlehre could be
related not only to numbers but also to spatial objects (points, segments, surfaces,
solids) as well as to mechanical phenomena (forces, moments).

An important result established by Hankel was the characterization of the
complex field C as the only field which can be obtained by addition of roots of
polynomials with coefficients from C. Any generalization (expansion) of C must
therefore result in certain conflict with the principle of permanence of forms, that
is some well recognized laws (commutativity or associativity of multiplication,
for example) should be rejected. Hankel’s result is thus a statement of a certain
maximality property of the field C. The complex field is the maximal field (among
many-dimensional number structures) which preserves the maximum amount of
standard laws concerning numbers (with the exception of ordering, of course).

2.3. Reception and critical remarks

It seems that the principle of permanence of forms was considered as a (heuristic)
rule warranting that the development of mathematics would be secured from po-
tentially nonsensical attempts at generalizations which could introduce objects
with “strange” properties too much different from standard (normal, natu-
ral) properties.

But the principle was also criticized by mathematicians and philosophers
at that time. Giuseppe Peano wrote critically about Hermann Schubert’s work
Grundlagen der Arithmetik in which the principle in question took a bizarre form
demanding that all the rules concerning new numbers should be the same as the
rules valid for the already known numbers. According to Peano, the rules should
be only conservative as much as possible.

William Hamilton wrote that
√
−1 is an absurd object in the context of sin-

gle (one-dimensional) numbers but it is entirely sensible in the context of complex
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(two-dimensional) numbers. As we remember, Hamilton proposed an algebraic def-
inition of complex numbers as pairs of real numbers with suitably defined arith-
metical operations on them. According to Helena Pycior (Pycior, 1981) Hamilton
did not accept Peacock’s proposals concerning symbolical algebra as a science
of arbitrary symbols governed by arbitrary laws because he claimed (as did also
many of his contemporaries) that algebra should deal with symbols connected with
meaning and the rules governing them should be based on intuition.

In a recent paper by Toader (Toader, 2019) the author compares the ideas of
Edmund Husserl and Ernst Mach and talks about the principle of permanence of
forms as: the principle of theoretical rationality (necessary for the authentic devel-
opment of science), the principle of practical rationality (related to the principle
of least effort in intellectual work), a metaphysical principle connected with math-
ematical intuition, and a semantic principle expressing relations between a formal
theory and its interpretation.

The paper Šikić, 1984 shows that the definition of exponentiation in the field C
is, in a sense, forced by the principle of permanence of forms (see the laws from the
table above) when we also take into account the standard laws of differentiation.

Meir Buzaglo investigates logical aspects of the process of expansion of con-
cepts in Buzaglo, 2002. He considers many examples from the history of mathemat-
ics showing, among others, changes in meaning of the number concept, expansion
of applicability of arithmetical operations, and paradoxes in set theory. He points
to the role of the principle of permanence of forms in these processes:

During the nineteenth century, when rigor gradually resumed a place
of importance in mathematics, there was a systematic attempt to con-
ceptualize the idea of expansions, as presented in Peacock’s “principle
of permanence of equivalent forms.” This attempt transferred the issue
from the products of the expansion to the process of expansion itself.
Peacock claimed that the symbolic algebra obtained from the expan-
sion of arithmetic is logically independent of arithmetic, yet suggested
by it. How an expansion of a realm can be “suggested” by the exist-
ing realm has not, however, been analyzed properly. Apparently this
lack is due to the fact that discussions in logic are generally centered
on deduction, which involves closed realms, thus marginalizing the is-
sue of the expansion of concepts. But the most cursory survey shows
that there is an abundance of logical, mathematical, and philosophical
material that is continually raising the idea of expansions as logical
and philosophical issue which naturally invites a more comprehensive
discussion. (Buzaglo, 2002)

3. David Hilbert: The Axiom of Solvability

The Principle of Permanence of Forms was widely accepted by mathematicians in
the second half of the 19th century as a heuristic principle behind the expansion
of the concept of number. New number systems were introduced either genetically
(by expanding “old” universe and adding new operations) or in an axiomatic way.
The second possibility became prevailing later than the first. Hermann Grassmann,
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Richard Dedekind, Giuseppe Peano characterized natural numbers (Grassmann,
1861, Dedekind, 1888, Peano, 1889). Among many constructions of real numbers
those proposed by Georg Cantor and Richard Dedekind (Cantor, 1872, Dedekind,
1872) were most commonly known. David Hilbert proposed an axiomatic charac-
terization of real numbers already in 1900 (Hilbert, 1900). We shall say later a few
words about hypercomplex numbers introduced in the 19th century.

The principle of permanence of forms should be considered in connection
with those factors which are responsible for mathematical discoveries, creation
of new mathematical objects, and acceptance of new rules. One of such factors is
Hilbert’s axiom of solvability. David Hilbert claimed that there is no ignorabimus
in mathematics: each properly formulated mathematical problem can be solved
(or it can be proved that under accepted assumptions there is no solution to the
problem). Hilbert expressed this idea in Hilbert, 1901. His epistemological opti-
mism was a reaction to pessimistic claims of some of his contemporaries (notably
Emil Du Bois-Reymond, Paul Du Bois-Reymond, Rudolph Virchow) concerning
alleged limitations of human knowledge and cognition and known as the so-called
Ignorabimusstreit. For instance, Paul Du Bois-Reymond claimed that there exist
objective limitations in our understanding of the continuum. Hilbert’s epistemo-
logical optimism, in turn, is clearly visible in his critical remarks of the views of
Leopold Kronecker and Luitzen Brouwer. The famous limitative theorems proved
later in the 20th century threw more light on possibilities and limitations of the
deductive method.

Michael Detlefsen in the paper Formalism (Detlefsen, 2005) writes about the
interconnections between the axiom of solvability and the principle of permanence
of forms:

Together, the Axiom of Solvability and the Principle of Permanence
guided the progressive extension of the number-concept. The Axiom of
Solvability expressed the mathematician’s goal to solve problems. The
Principle of Permanence acted as a constraint upon the applicability
of this axiom. It required that newly introduced numbers preserve the
basic laws of arithmetic. More precisely, it required that the laws gov-
erning new numbers be consistent with the laws governing the old ones.
(Detlefsen, 2005)

In the famous work Über das Unendliche (Hilbert, 1926) the author discusses,
among others, the role played by ideal elements in several mathematical domains.
Introduction of points in infinity in projective geometry brings nice symmetries
between points and straight lines in the system. Introduction of complex num-
bers gives a natural simplification of theorems about the existence and number of
roots of equations. Kummer’s ideal numbers secure the uniqueness of decompo-
sition into prime factors and similar role is played by Dedekind’s ideals. All these
cases are related to Hilbert’s axiom of solvability.

Hilbert formulated also das schöpferische Princip, a principle which proclaimed
the freedom of mathematical activities in the domain of concept formation and in-
troduction of rules of inference. The symbolic methods of mathematics should be,
according to Hilbert, consistent and fruitful. The axiomatic method is fundamental
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in Hilbert’s formalistic approach to mathematics. It is interesting that in a short
note Hilbert, 1900 the author uses the verb denken (think) rather than anschauen
(imagine, intuit) when he is proposing an axiom system for real numbers. Finally,
Hilbert stresses the fact that an important property of certain mathematical do-
mains characterized axiomatically is their completeness understood as a unique
characterization of the domain in question. This completeness may take a form
of categoricity (existence of exactly one model, up to isomorphism) or semantic
completeness (all models of a theory are elementarily equivalent) or the so-called
hilbertian completeness, that is a property of being a maximal or minimal model
of the theory. The last property is related to Hilbert’s axiom of completeness from
the first edition of Grundlagen der Geometrie (Hilbert, 1899). This axiom was re-
placed in the later editions by the axiom of line completeness. The axiom system
of geometry presented in Borsuk, Szmielew, 1975 includes instead the standard ax-
iom of completeness for real numbers. As we remember, the field of real numbers
is the only (up to isomorphism) completely ordered field. It is also the maximal
Archimedean field.

4. Digression: hypercomplex numbers

Domestication of negative and complex numbers took a rather long time. The
situation was different in the case of hypercomplex numbers introduced during
the 19th century. We assume that the reader is familiar with fundamental facts
from the history of complex numbers. It seems that the final domestication of
these numbers took place when they were given algebraic definition (Hamilton)
and geometric representation (Wessel, Argand, Gauss) and when the fundamental
theorem of algebra was proved by Gauss.

The important step in the generalization of the concept of number was the
acceptance of the fact that numbers may be more than one-dimensional. First, we
have two-dimensional numbers:

1. Complex numbers. They are understood as pairs of real numbers with addi-
tion and multiplication given by the conditions:

(a, b)⊕ (c, d) = (a+ b, c+ d) (a, b)⊗ (c, d) = (ac− bd, ad+ bc).

In particular, (0, 1)⊗(0, 1) = −1. Complex numbers form a field C. This field
is characterized (up to isomorphism) as the only algebraically closed field
of characteristic zero whose transcendence degree over the field of rational
numbers equals continuum. Complex numbers have a matrix representation.

2. Dual numbers. They are understood as pairs of real numbers with addition
and multiplication given by the conditions:

(a, b)⊕ (c, d) = (a+ b, c+ d) (a, b)⊗ (c, d) = (ac, ad+ bc).

In particular, (0, 1)⊗ (0, 1) = (0, 0). Dual numbers form a commutative ring
with unity and with zero divisors. They have a matrix representation.
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3. Double numbers. They are understood as pairs of real numbers with addition
and multiplication given by the conditions:

(a, b)⊕ (c, d) = (a+ b, c+ d) (a, b)⊗ (c, d) = (ac+ bd, ad+ bc).

In particular, (0, 1) ⊗ (0, 1) = (1, 0). Double numbers form a commutative
ring with unity and zero divisors. They have a matrix representation.

Besides complex numbers, the most popular hypercomplex numbers are quater-
nions introduced by William Hamilton. They are understood as quadruples
(a, b, c, d) of real numbers usually written in the form known from the language
of vector spaces as a + bi + cj + dk, where i, j, k are imaginary elements (basis
vectors). We understand quaternions H as a four dimensional vector space over
the field of real numbers, where addition and multiplication by scalars are defined
in the usual way and multiplication is uniquely characterized by the conditions:

i2 = j2 = k2 = ijk = −1.

Alternatively, multiplication can be characterized by the following table:

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

As we see the multiplication of quaternions is not commutative. Victor Katz
writes about the significance of this fact for investigations in symbolical algebra
as follows:

Hamilton’s system was the first significant system of “quantities” that
did not obey all the standard laws that Peacock and De Morgan had set
down. As such, its creation broke a barrier to the consideration of sys-
tems violating these laws, and soon the freedom of creation advocated
by Peacock became a reality. (Katz, 2018)

Thus passing from the real numbers to complex numbers we keep the arith-
metical properties from the table from section 2.1. but we lose ordering; passing
from complex numbers to quaternions we keep all mentioned properties with the
exception of commutativity of multiplication. Some further kinds of hypercomplex
numbers include:

1. Octonions. The octonions O form an eight-dimensional algebra with divi-
sion over the field of real numbers. Multiplication of octonions is neither
commutative nor associative. They do not have a matrix representation.

2. Sedenions. The sedenions S form a sixteen-dimensional algebra over the field
of real numbers. Multiplication of sedenions is neither commutative nor as-
sociative. It does not satisfy the condition of alternativity:

x⊗ (x⊗ y) = (x⊗ x)⊗ y (y ⊗ x)⊗ x = y ⊗ (x⊗ x).
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However, the power associativity law holds: xm+n = xm⊗xn. There are zero
divisors in S.

3. Cayley-Dickson construction. This general construction gives an infinite se-
quence of algebras over the field of real numbers. The first five elements of
this sequence are: R, C, H, O, and S. Complex numbers in this construc-
tion are pairs of real numbers, quaternions are pairs of complex numbers,
and so on.

4. Clifford algebras. They are algebras isomorphic with the ring of matrices over
R, C, H, or direct unions of such algebras.

There are still many other types of hypercomplex numbers. Properties of num-
bers mentioned above concerning dimension, ordering and multiplication are pre-
sented in the following table:

R C H O S
dimension 1 2 4 8 16 > 16
ordering yes no no no no no
commutativity yes yes no no no no
associativity yes yes yes no no no
alternativity yes yes yes yes no no
power associativity yes yes yes yes yes yes
zero divisors no no no no yes yes

Several isomorphism theorems characterize certain of the number systems men-
tioned in this section. For instance, Frobenius theorem states that any associative
algebra with division over the field of real numbers is isomorphic with R, C, or H.
Ostrowski theorem, in turn, says that each field which is complete with respect to
the metric determined by the Archimedean norm is isomorphic with either R or C
and the norm is equivalent with the standard absolute value.

Hypercomplex numbers are not the only generalizations natural, rational, and
real numbers. Another types of generalizations include, among others, p-adic num-
bers, hyperreal numbers, or surreal numbers.

Still another story concerns the arithmetic of ordinal and cardinal numbers.
Properties of the operations on these numbers differ significantly from those typical
for standard natural numbers. This is of course not surprising, because ordinal and
cardinal numbers are defined for all sets, including the infinite sets. It should be
perhaps added that there are several different ways to develop arithmetic of ordinal
and cardinal numbers, for instance that proposed by Cantor and that proposed by
Hessenberg.

5. The Principle of Permanence of Forms in logic

Could the Principle of Permanence of Forms be applied to formal logic? We think
that certain analogies between extensions (or generalizations) of the algebraic con-
cepts and extensions (or generalizations) of logical systems could be drawn.
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New logical systems are introduced on the basis of several motivations, coming
from mathematics, linguistics, philosophy, information science, and even empirical
sciences. In most cases the starting point is the system of classical propositional
logic or the system of classical first-order logic.

We think that in the following situations in logic one could possibly see an
analogy with the algebraic principle of permanence of forms:

1. Finitary language. The assumption that expressions of formal languages are
finite syntactic objects is considered to be perfectly natural. Expressions
are finite strings of symbols from a countable list and each expressions has
a syntactic representation in a form of a finite tree. But we can consistently
consider also languages with expressions of infinite length: in languages Lαβ
(where α and β are infinite ordinal numbers) we admit conjunctions and dis-
junctions of length less than α and quantifier strings of length less than β.
Such languages have a well-developed model theory and they find serious ap-
plications also in mathematics itself. Syntax of these languages presupposes
a certain portion of set theory. Infinitary languages have greater expressive
strength than finitary first-order logic but they lack some “good” (natural)
deductive properties of the latter.

2. Finitary consequence. Also the assumption that the rules of inference are
finitary (that is, we infer a conclusion from a finite set of assumptions) is
considered as very natural. In systems over finitary language and with fini-
tary rules of inference all proofs also are finite syntactic objects (represented
as strings or trees). If we allow infinitary rules of inference (as for instance
the ω-rule), then proofs are no longer finite, of course. Observe that proofs
based on the standard mathematical induction are finitary, because they are
based on the induction axiom in arithmetic (or on an instance of the in-
duction axiom schema). It is debatable whether infinitary rules of inference
reflect adequately human inferences but we are obviously free to consider
logical systems with such rules.

3. Logical constants. Classical logical constants include: propositional connec-
tives and quantifiers (sometimes also the identity predicate). Usually, logical
constants are given by explicit list, but there are also attempts at a general
characterization of logical constants, for instance in terms of rules of infer-
ence or in semantic terms (see for example Tarski, 1986). In certain systems
logical constants are mutually definable (as in the classical propositional
logic), in other are mutually independent (as in intuitionistic logic). Theo-
rem proved by Andrzej Grzegorczyk says that predicates, function symbols,
and individual constants are neutral (that is, they are indistinguishable from
the point of first-order logic). Necessity and possibility are treated as logical
constants in modal logic, but some logicians claim that modal logics are only
theories of these notions. Addition of new logical constants may significantly
improve the expressive power of logic, as the case of generalized quantifiers
(characterized semantically) clearly shows.
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4. Consistency. This property was always a methodological ideal in logic and
mathematics. In the latter it was even considered as a criterion of existence.
Inconsistent systems (in which everything can be proved) are epistemologi-
cally useless. However, systems which tolerate (local) inconsistences and in
which not everything can be proved are relevant as adequate representations
of systems of belief.

5. Non-Fregean logic. In the Fregean approach there are only two denotations of
sentences: Truth and Falsity. More subtle approach was proposed by Roman
Suszko: in his non-Fregean logic the denotations of sentences are situations
(described by the sentences). Non-Fregean logic is two-valued and fully ex-
tensional (it does not admit intensional constructions). The ontology of this
logic is much richer than that of classical logic.

6. Truth and proof. Theorems about soundness and completeness of deductive
systems are doubtfully the most important logical metatheorems: they es-
tablish a correspondence between proof and truth. Not all systems of logic
satisfy the completeness theorem (for instance second-order logic with the
standard semantics). In intuitionistic logic existence of proof is the sole cri-
terion of validity. Semantical notions are in general much more complicated
from the computational point of view. Limitative theorems proved in the
20th century show the possibilities and limitations of the deductive method
as far as the relation between proof and and truth is concerned.

7. First-order thesis. The problem which system of logic is the right one (for
instance from the point of view of applications) is vividly discussed in the
philosophy of logic (see for instance Woleński, 2004). The First-order thesis
says that first-order logic (FOL) is the logic. Among arguments supporting
this thesis are:

(a) FOL has “good” deductive properties: it is consistent, sound, complete,
compact, satisfies the deduction theorem, and so on.

(b) FOL does not distinguish infinite powers (Löwenheim-Skolem-Tarski
theorem).

(c) FOL is universal in applications. Many important mathematical theo-
ries are formalized within FOL (notably Zermelo-Fraenkel set theory).

(d) FOL is maximal logic satisfying the compactness theorem and the Lö-
wenheim-Skolem theorem (Lindström theorem).

FOL has at the same time very poor expressive power: such important mathe-
matical notions as for instance infinity, continuity, set of measure zero cannot
be expressed (by a single formula) in FOL. Mathematicians seem to evalu-
ate expressive power rather highly and thus they may not adhere to the
first-order thesis:

But if you think of logic as the mathematicians in the street, then
the logic in a given concept is what it is, and if there is no set
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of rules which generate all the valid sentences, well, that is just
a fact about the complexity of the concept that has to be lived
with. (Barwise, Feferman, 1985)

8. Paradoxes. Certain properties of classical logic are considered as paradox-
ical (for instance paradoxes of material implication). There are many log-
ical systems which omit these paradoxes preserving the “good” properties
of classical logic as much as possible. In particular, several logical systems
are constructed in order to model adequately specific intensional phenomena
occurring in inferences conducted in natural language.

9. Points of view. Harvey Friedman expressed the opinion that many incom-
pleteness phenomena are caused by the fact that we admit completely arbi-
trary elements instead of limiting ourselves to investigation of well-recognized
objects (Friedman, 1992). For example, the continuum hypothesis which is
independent from the axioms of Zermelo-Fraenkel set theory is nevertheless
true, if we restrict ourselves to Borel sets only. Friedman discusses in the cited
paper several points of view (for instance: Borel, predicative, constructive)
and shows how they influence the incompleteness phenomena.

Notice that in each of these cases we deal with permanence of some proper-
ties and at the same time with certain creative aspects determining the original
features of the generalizations in question. Generalizations in logic are not linear:
rather, they form a star-like structure with classical logic at the center and axes
corresponding to the main ideas motivating particular generalizations.

Arguments based on analogy are risky. It may happen that what we see as
an analogy is only a coincidental resemblance. However, we think that the search
for invariants in the development of logical systems suggested by the factors listed
above (and possibly further ones) may elucidate the mechanisms responsible for
that development. We have only sketched the idea here and we hope to return to
this issue in another paper.

6. The Principle of Permanence of Forms in teaching mathemat-
ics

Finally, let us say a few words about the Principle of Permanence of Forms in math-
ematical education. We think that the principle in question is, at least implicitly,
present in the introduction of number systems via genetic method. Numbers which
are new to the pupils are shown as obeying the laws valid for the numbers already
known.

Another implicit occurrence of the discussed principle is related to these sit-
uations in which it is useful to pay attention to the form of algebraic expressions
before tedious calculations take place. Experts in mathematical education often
stress that pupils hurry with “blind” calculations without notice that they can be
avoided, if one carefully looks at the form of expressions. The paper Menghini, 1994
reports on the following activities of sixteen years old pupils:
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Find the value of the following expression:
z4

c2 · (b− a) + z4

c2 · (a− b)
For this exercise most of the students carried out very detailed calcu-
lations.
For which values of x is the following inequality true?
x2 + x < x2 + x+ 1
In the best answers students carried out a comparison of the two
parabolas represented by the two parts of the inequality.
Express each of a, b, c in terms of the other two values:
a− 4c2 = 1

b

Only 50% of the students gave three correct answers.
If m, n, p, q are natural numbers, the following equalities are true
(always, never, sometimes):
(2n+ 1)(2m+ 3) = 2p
(2n+ 5)(2m+ a) = 2p+ 3
(2n+ 1)(2m+ 1) = 4pq
This last exercise was set for university students (in the Mathematics
Department, of course!) and very few answered correctly, most of them
saying things like: “The first equality is true when 2p is an odd number”.
(Menghini, 1994)

The principle of permanence of forms can be useful in explanations of certain
mathematical concepts which often cause hesitation on the part of a student. This
is the case of exponentiation with exponent zero, if exponentiation was formerly
explained as iterated multiplication. Support for the validity of a0 = 1 can be seen
from the law ab+c = ab · ac, because an = a0+n = a0 · an, and therefore a0 = 1.

Similarly, explanation of the fact that negative times negative is positive which
causes troubles for many students may be supported by the law of distributivity
of multiplication over addition in the form (a+ b) · (c+d) = a · c+a ·d+ b · c+ b ·d.
Specifying the values, say a = 3, b = −1, c = 5, d = −2, we then ask the students
to calculate the values of both sides of the equation and to notice that (−1) · (−3)
must be equal 3 for the equation to hold true.
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