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Abstract. The theory of similar figures, as developed in school mathema-
tics, emulates the theses of Euclid’s propositions included in book VI of
the Elements. It does not, however, represent Euclid’s proof technique, i.e.
proportions. The theory is usually developed within a metric space, with
line segments having lengths, figures having areas, fractions simulating pro-
portions, and the similarity scale being a real number. In like manner, in
(Hilbert, 1902, ch. III), David Hilbert develops his own proportion theory to
prove Euclid’s propositions VI.2 and VI.4. Yet, Hilbert applies proportion
only to line segments, while applying similarity only to triangles. Thus far,
no one has managed to develop it further to get Euclid’s proposition VI.31,
which crowns the ancient Greek theory of similar figures. Although Robin
Hartshorne, in (Hartshorne, 2000, ch. 5), suggests that Hilbert’s project to
reinterpret book VI can be completed by applying a concept of the con-
tent of a figure, contents of figures are not considered as terms of Hilbert’s
proportions.

In this paper, we apply the area method as introduced in (Chou, Gao,
Zhang, 1994) to reconstruct Euclid’s theory of similar figures, both his propo-
sitions, and the proof technique. Our interest is focused on proposition VI.1.
It plays a crucial role in Euclid’s system, and yet, it is the most controver-
sial proposition of book VI when viewed from the modern perspective. As
the only proposition in book VI, it relies on comparing figures in terms of
greater-lesser. Since Euclid’s system does not provide any criteria on how
to decide whether one figure is greater then another, this relation relies on
diagrammatic evidence rather than explicit mathematical rules. To bypass
any reference to the greater-lesser relation, we adopt an axiomatic account
of the area method introduced in (Janicic, Narboux, Quaresma, 2012), since
it includes proposition VI.1 as an axiom.

The plan of this paper is as follows: first, we introduce axioms of the area
method, next, we present a model for these axioms. Then, we reconstruct
exemplary propositions of book VI within the framework of the area method.
Finally, we compare Euclid’s proposition VI.1 with the fundamental theorem
of the area method, the so-called Co-side theorem.

∗2010 Mathematics Subject Classification: Primary: 97G40; Secondary: 03A05
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1. Area Method Axiomatically

(Chou, Gao, Zhang, 1994, ch. 1) provides an intuitive introduction into the
area method based on the standard formula for the area of a triangle: one-half
base times height. This formula enables to derive the fundamental tool of this
method, namely the Co-side theorem. We will show that Euclid’s proposition VI.1
is a special case of this theorem.

(Chou, Gao, Zhang, 1994, ch. 2) sketches an axiomatic development of the
theory, which includes Euclid’s proposition VI.1 as an axiom. (Janicic, Narboux,
Quaresma, 2012) provides a revised version of that system of axioms, where Eu-
clid’s VI.1 is also included as an axiom. In section § 1.2 below, we present the later
axioms.

With axiom A13, (Janicic, Narboux, Quaresma, 2012) goes back to the formula
for the area of a triangle. For the sake of completeness, we keep this axiom in our
presentation, nevertheless, we do not rely on it in our development. We seek to
develop a theory that does not apply any formula for an area of a triangle. It is
to be like Euclid’s system in this respect.

1.1. Primitive Notions and Basic Definitions

There are three primitive notions in the area method: point, length of a directed
segment, and signed area of a triangle. They are characterized by axioms A1 to
A13 presented in the next section.

In what follows, capital letters A, B, C etc. stand for points; P stands for the
set of all points. An ordered pair of points is a segment, an ordered triple of points
is a triangle.

Let (F,+, ·, 0, 1, <) be an ordered field closed under the square root operation.
The length of a segment AB, AB, in short, is an element of the set F. Hence, we
assume that there is a map which assigns to an ordered pair of points a number:

P2 3 〈A,B〉 7→ AB ∈ F.

The number AB can be positive, negative or zero.
The signed area of a triangle ABC, SABC , in short, is an element of F. Then,

we assume there is a map S, which assigns to the ordered triple of points a number
(positive, negative or zero):

P3 3 〈A,B,C〉 7→ SABC ∈ F.

To model a Euclidean scenery, (Chou, Gao, Zhang, 1994) provides definitions of
basic geometric relations, namely, the parallel and perpendicular segments. These
are as follows.

Definition 1
Points A,B,C are co-linear iff SABC = 0.

Keywords and phrases: Euclid, proportion, similarity, area method
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Definition 2
Two segments AD and BC, where A 6= D and B 6= C, are parallel, iff SABC =
SDBC . For this relation, we adopt the standard symbol AD ‖ BC.

Definition 3
For three points A, B and C, the Pythagorean difference, denoted by PABC , is
defined by

PABC = AB
2 +BC

2 −AC2
.

Definition 4
Two segments DB and CA, where D 6= B and C 6= A, are perpendicular iff
PDCA = PBCA. This relation is denoted by DB ⊥ CA.

One may object that while we provide definitions of parallel or perpendicular
line segments, Euclid considers (infinite) lines instead. In fact, the infinite straight
line is the 18th century interpretation of the Elements. Euclid’s term straight-line,
εὐδεῖα γραμμή, refers to what we would call a closed line-segment (a segment with
its end-points). Indeed, his definition of parallel lines (definition 23 of Book I) refers
to line-segments that “being produced to infinity in each direction, meet with one
another in neither”.1 Note that an infinite straight line cannot be “produced to
infinity”.2

1.2. Axioms for the Area Method

Here are the axioms for the area method.
A1. AB = 0 iff A and B are identical.
A2. SABC = SCAB .
A3. SABC = −SBAC .
A4. If SABC = 0, then AB +BC = AC (Chasles’ axiom).
A5. There are points A, B and C such that SABC 6= 0 (not all points are

collinear).
A6. SABC = SDBC + SADC + SABD (all points are in the same plane).3
A7. For each element r of F , there exists a point P , such that SABP = 0 and

AP = rAB (construction of a point on a line).
A8. If A 6= B, SABP = 0, AP = rAB, SABP ′ = 0 and AP ′ = rAB, then

P = P ′.
A9. If PQ ‖ CD and PQ

CD
= 1, then DQ ‖ PC (parallelogram).

A10. If SPAC 6= 0 and SABC = 0, then AB

AC
= SP AB

SP AC
(Euclid’s proposition

VI.1).
A11. If C 6= D and AB ⊥ CD and EF ⊥ CD, then AB ‖ EF .
A12. If A 6= B, AB ⊥ CD and AB ‖ EF , then EF ⊥ CD.
A13. If FA ⊥ BC and SFBC = 0, then 4 · S2

ABC = AF
2
BC

2 (formula for the
area of a triangle).

1All English translations of the Elements after (Fitzpatrick, Heiberg, 2007).
2(Błaszczyk, Mrówka, 2013, pp. 181–210) provides more evidence that Euclid’s straight-line

means line segment with its end-points.
3The idea of signed area originates from Hilbert’s Foundations of Geometry. In (Hilbert, 1970,

§ 20) he proves the theorem that is a counterpart of axiom A6.
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1.3. Introducing Euclidean context

In proposition I.38, Euclid states that 4ABC = 4DBC, given AD ‖ BC (see
Fig. 1), while the equality of triangles means equality of areas, as explained in
(Błaszczyk, 2018). Euclid’s I.38 is covered by the first part of Definition 2, that
is, if AD ‖ BC, then SABC = SDBC . Definition 2 also mirrors its reverse, namely
I.39:
“Let ABC and DBC be equal triangles which are on the same base BC, and on
the same side. I say that they are also between the same parallels”.

B

A

C

D

E

Fig. 1. Elements, I.39.

In the area method, Euclid’s stipulation “on the same side” is rendered by
the fact that the area of a triangle agrees with the order of vertexes in a way
encoded by axiom A3. Moreover, in Definition 2, instead of the equality of triangles
4ABC = 4DBC, signed areas SABC , SDBC are involved.

Similarly, the first part of Definition 4 includes modern version of the
Pythagorean theorem, namely: in Fig. 2a, take A = B, then the triangle CDB
turns into a right triangle CDA. If DA ⊥ CA, then PDCA = PBCA. In this
special case, the equality PDCA = PBCA means DC

2 = DA
2 + AC

2. Yet,
Definition 4 mirrors also the reverse of the Pythagorean theorem, that is, if
DC

2 = DA
2 + AC

2, then DA ⊥ CA. In the Elements, the Pythagorean theorem
is proposition I.47. Its reverse, proposition I.48, reads:
“For let the square on one of the sides, BC, of triangle ABC be equal to the squares
on the sides BA, AC. I say that angle BAC is a right-angle”.

Below, we present two simple theorems. In Euclidean context, they are more
than obvious.4 Here, we provide proofs based on the area method axioms system.5

Theorem 1
If AD ‖ BC, then BC ‖ AD (Fig. 1)

Proof. Let AD ‖ BC. By Definition 2, SABC = SDBC . Then, the following equal-
ities obtain

SBAD
A6= SCAD + SBCD + SBAC

A2= SCAD + SDBC + SBAC
A3=

A3= SCAD + SDBC − SABC = SCAD
4Those and many other lemmas about parallelism and perpendicularity have been already

proved and machine checked in (Narboux, 2004).
5Symbol A6= represents a reference to axiom A6.
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(a) Elements, I.48.
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(b) Theorem 2.

Fig. 2. Reverse of the Pythagorean theorem.

Again, by definition of parallel lines, we get: since SBAD = SCAD, then BC ‖ AD.
�

Theorem 2
If DB ⊥ CA, then CA ⊥ DB (Fig. 2b)

Proof. Since DC = −CD, then DC2 = CD
2. By Definition 4, if DB ⊥ CA, then

PDCA = PBCA.
From the definition of the Pythagorean difference, equalities follow

PDCA = DC
2 + CA

2 −DA2
,

PBCA = BC
2 + CA

2 −BA2
.

Hence, PDCA = PBCA gives

DC
2 + CA

2 −DA2 = BC
2 + CA

2 −BA2
.

Or, in an equivalent form

DC
2 −DA2 = BC

2 −BA2
,

DC
2 −BC2 = DA

2 −BA2
.

Due to the last equality, we have

PADB = AD
2 +DB

2 −AB2 = DA
2 −BA2 +DB

2 (1)= DC
2 −BC2 +DB

2 =

= CD
2 +DB

2 − CB2 def= PCDB .

Finally, since PCDB = PADB , by Definition 4, CA ⊥ DB.
�
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2. Model for the area method

2.1. Interpreting primitive notions

In this section, we provide a model for axioms A1–A13.6 We interpret the set
of points as elements of the Cartesian plane R×R. Thus, a point A is an ordered
pair of real numbers. In this chapter, we assume that A = (x1, y1), B = (x2, y2),
C = (x3, y3), D = (x4, y4).

The lexicographical order on the plane R× R is defined as follows:

Definition 5

A � B ⇐⇒ x1 < x2 ∨ (x1 = x2 ∧ y1 6 y2) ,

where x1 < x2 is the inequality of real numbers.

Definition 6
The length of a directed segment AB is the number AB defined by

AB =
{√

(x2 − x1)2 + (y2 − y1)2, when A � B,
−
√

(x2 − x1)2 + (y2 − y1)2, when B � A.

Definition 7
The signed area for a triangle ABC is the number SABC defined by

SABC = 1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ .
Note that in analytic geometry, the number |SABC | stands for the area of

a triangle with vertexes A, B, C. In our interpretation, the absolute value is
omitted, hence the number SABC can be positive or negative.

2.2. Co-linearity, parallelism, perpendicularity

We show that in our model, Definitions 1–4 introduce the standard meaning
of (a) co-linearity of points, as well as (b) parallel and (c) perpendicular lines.

(Ad a) First, we show that if points A,B,C are co-linear, then SABC = 0.
Let then A,B,C lie down on a line given by the equation y = ax + b. Then

we have
y1 = ax1 + b, y2 = ax2 + b, y3 = ax3 + b.

Hence,

SABC = 1
2

∣∣∣∣∣∣
x1 ax1 + b 1
x2 ax2 + b 1
x3 ax3 + b 1

∣∣∣∣∣∣ = 0.

6Julien Narboux has pointed out that a combination of https://github.com/
GeoCoq/GeoCoq/blob/master/Tarski_dev/Ch16_coordinates_with_functions.v and https://
github.com/GeoCoq/GeoCoq/blob/master/Meta_theory/Models/POF_to_Tarski.v gives a ma-
chine checked proof of results in this section.

 https://github.com/GeoCoq/GeoCoq/blob/master/Tarski_dev/Ch16_coordinates_with_functions.v
 https://github.com/GeoCoq/GeoCoq/blob/master/Tarski_dev/Ch16_coordinates_with_functions.v
 https://github.com/GeoCoq/GeoCoq/blob/master/Meta_theory/Models/POF_to_Tarski.v
 https://github.com/GeoCoq/GeoCoq/blob/master/Meta_theory/Models/POF_to_Tarski.v
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Suppose now that SABC = 0 and A,B lie on the line y = ax+ b. This means
that the equalities hold

y1 = ax1 + b, y2 = ax2 + b.

From the assumption

SABC =

∣∣∣∣∣∣
x1 ax1 + b 1
x2 ax2 + b 1
x3 y3 1

∣∣∣∣∣∣ = 0,

it follows that

x1(ax2 + b) + x2y3 + x3(ax1 + b)− x3(ax2 + b)− x1y3 − x2(ax1 + b) = 0.

As a result, we get y3 = ax3 + b. This means that A,B,C lie on the line
y = ax+ b.

(Ad b) Let

SACD = 1
2

∣∣∣∣∣∣
x1 y1 1
x3 y3 1
x4 y4 1

∣∣∣∣∣∣ , SBCD = 1
2

∣∣∣∣∣∣
x2 y2 1
x3 y3 1
x4 y4 1

∣∣∣∣∣∣ .
If SACD = SBCD, then

y1 − y2

x2 − x1
= y4 − y3

x4 − x3
.

This means that the slopes of the lines on which points A, B, on the one hand,
and C, D, on the other, lie, are equal. As a result, lines running through points
A,B and C,D, respectively, are parallel.

Finally, suppose A,B and C,D lie on parallel lines, that is

y1 = ax1 + b, y2 = ax2 + b and y3 = ax3 + c, y4 = ax4 + c.

Hence,

SACD = 1
2

∣∣∣∣∣∣
x1 ax1 + b 1
x3 ax3 + c 1
x4 ax4 + c 1

∣∣∣∣∣∣ = 1
2(x4 − x3)(b− c),

SBCD = 1
2

∣∣∣∣∣∣
x2 ax2 + b 1
x3 ax3 + c 1
x4 ax4 + c 1

∣∣∣∣∣∣ = 1
2(x4 − x3)(b− c).

It means
SACD = SBCD.

We can conclude that in our model, the relationship ‖, as given by Definition
2 is the same as parallelity in analytic geometry.

(Ad c) Suppose segments DB and CA are perpendicular in the sense of Defi-
nition 2, i.e., PDCA = PBCA
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From the definition of perpendicularity we get:

PDCA = DC
2 + CA

2 −DA2
,

PBCA = BC
2 + CA

2 −BA2
,

DC
2 −DA2 = BC

2 −BA2
,

y4 − y2

x1 − x3
= x4 − x2

y1 − y3
.

This means that the slopes of the lines AB and CD are in inverse proportion
to each other and have opposite signs. Thus, we can conclude that the relationship
⊥ in the defined model means perpendicularity in analytical geometry.

Suppose D,B and C,A lie on perpendicular lines, therefore the scalar product
of DB and CA is zero;

(DB · CA) = (x2 − x4)(x1 − x3) + (y2 − y4)(y1 − y3) = 0,

x2x1 − x2x3 − x4x1 + x4x3 + y2y1 − y2y3 − y4y1 + y4y3 = 0.

Now,

PDCA = 2x3
2 − 2x3x4 − 2x1x3 + 2x1x4 + 2y3

2 − 2y3y4 − 2y1y3 + 2y1y4,

PBCA = 2x3
2 − 2x3x2 − 2x1x3 + 2x1x2 + 2y3

2 − 2y3y2 − 2y1y3 + 2y1y2,

Obviously,
PDCA = PBCA ⇐⇒ PDCA − PBCA = 0,

Hence, the difference PDCA − PBCA equals

−2(x2x1 − x2x3 − x4x1 + x4x3 + y2y1 − y2y3 − y4y1 + y4y3).

Therefore, when DB and CA are perpendicular, then PDCA = PBCA.

2.3. Interpreting axioms

In this section, we show that under the interpretation of section 2.1, all axioms
of the area method are theorems of analytic geometry on the Cartesian plane R×R
with lexicographic order. Since parallelism and perpendicularity in our interpre-
tation mean the same as parallelism and perpendicularity in analytic geometry,
then axioms A9, A11, A12, A13 are well-known theorems.
Ad A1. Given A = (x1, y1) and B = (x2, y2),

√
(x2 − x1)2 + (y2 − y1)2 = 0 if and

only if x1 = x2, y1 = y2.
A2 and A3 follow from properties of a determinant.

Ad A2. Indeed, the equality SABC = SCAB obtains, because

SCAB = 1
2

∣∣∣∣∣∣
x3 y3 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ = −1
2

∣∣∣∣∣∣
x1 y1 1
x3 y3 1
x2 y2 1

∣∣∣∣∣∣ = 1
2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = SABC .



Euclid’s theory of proportion revised [45]

Ad A3. Similarly, the equality SABC = −SBAC is the result of the two inter-
changing rows of the determinant rule.

Ad A4. If SABC = 0, then AB +BC = AC.
Let us consider different cases of the location of these points according to

lexicographic order. Let, C � A � B.

AB = |AB|, BC = −|BC|, AC = −|AC|.

Hence
AB +BC = |AB| − |BC| = −|AC| = AC.

It can be shown analogously that the equality stated in axiom A4 is met for
all possible cases.

Ad A5. Here are points for which the signed area is not equal to 0.

SBAC = 1
2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1
2 .

Ad A6. The equality SABC = SDBC + SADC + SABD follows from simple
calculations, which do not depend on a location of point D relative to A, B and
C, namely

Fig. 3. SABC = SDBC + SADC + SABD.

SABC = 1
2(x1y2 + x3y1 + x2y3 − x3y2 − x1y3 − x2y1).

SDBC = 1
2(x4y2 + x3y4 + x2y3 − x3y2 − x4y3 − x2y4).

SADC = 1
2(x1y4 + x3y1 + x4y3 − x3y4 − x1y3 − x4y1).
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SABD = 1
2(x1y2 + x4y1 + x2y4 − x4y2 − x1y4 − x2y1).

SDBC + SADC + SABD = SABC .
Ad A7. Let A = (x1, y1), B = (x2, y2) and P = (x, y) lie on a line y = ax + b

passing through A,B. Let us define the coordinates of P as follows

x = 1
r

(x2 − x1) + x1, y = 1
r

(y2 − y1) + y1.

Then
rAP = ±r

√
(x− x1)2 + (y − y1)2,

where ± depends on whether A ≺ P or P ≺ A. Since

|rAP | =
√

(x2 − x1)2 + (y2 − y1)2 = |AB|,

by putting A ≺ P or P ≺ A, we get

rAP = AB.

Ad A8. SABP = 0 = SABP ′ , then points A,B, P, P ′ are co-linear. Since

AP ′ = rAB = AP,

P, P ′ must be identical.
Ad A10. When SABC = 0, then A,B,C lie on a line y = ax + b. Let A =

(x1, ax1 + b), B = (x2, ax2 + b), C = (x2, ax2 + b), P = (x4, y4). According to
Definition 6, we have

AB = ±
√

(x2 − x1)2 + (ax2 − ax1)2 = ±|x2 − x1|
√
a2 − 1,

AC = ±
√

(x3 − x1)2 + (ax3 − ax1)2 = ±|x3 − x1|
√
a2 − 1,

where ± depends on relative location of the points A,B and A,C respectively
according to Definition 6. By considering possible locations of points A,B,C on
the line y = ax+ b, we get the following equality

AB

AC
= x2 − x1

x3 − x1
.

Signed areas of triangles are as follows

SPAB = 1
2(x1 − x2)(ax4 − y4 + b),

SPAC = 1
2(x1 − x3)(ax4 − y4 + b).

Finally, we get

SPAB
SPAC

= (x1 − x2)(ax4 − y4 + b)
(x1 − x3)(ax4 − y4 + b) = (x2 − x1)

(x3 − x1) = AB

AC
.
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3. Euclid’s proportions by the area method

From our perspective, the crux of the axiomatic development of the
area method concerns the fact that the area of a triangle is not reduced to
any formula, be it SABC = 1

2ah, SABC = 1
2ab sinα, or any other. Indeed, SABC is

a primitive concept, it is an entity of its own. At the same time, it is also subject
to the arithmetic of fractions. Regarding terms such as (1) SPAB = SPAC , or
(2) AB

AC
= SP AB

SP AC
, equality means equality in an ordered field, and it should be

introduced by logical axioms. In mathematics, such axioms are usually implicit.
Still, terms such as this AB

AC
= SP AB

SP AC
mimic ancient proportions, in a way we

explain below.
(Ad 1) In Book VI of the Elements, triangles, along with other figures, are en-

tities of their own; they are also subject to some fraction-like operations, namely
proportions, as introduced in Book V. Within Euclid’s framework, equality refers
to figures; it is a mathematical rather than a logical concept. In fact, a group
of propositions from Book I and II form the theory of the area (theory of equal
figures), as explained in (Błaszczyk, 2018). It builds on procedures justified by
Common Notions and straight-edge and compass constructions. Currently, we fo-
cus on the equality of triangles. Thus, terms such as SPAB = SPAC do not refer
to identity or congruence, bur rather to Euclid’s theory of equal figures.

What is really new, it is the role of an order of points. Within Euclid’s system,
an order of points, be it end-points of a line segment or vertexes of a triangle,
plays no role. In the area method, the role of the order of vertexes, as encoded in
axiom A3, is crucial.

(Ad 2) Euclid’s proportions can be interpreted in an Archimedean field as
follows

a : b :: c : d⇔ a · b−1 = c · d−1.

In the 17th century, proportions were replaced by fractions. Yet, the arithmetic
of fractions and proportions is not the same. The arithmetic of fractions provides
us with more mathematical capabilities. For instance, while the square of fraction,
(ab )2, is a legitimate object, the square of ratio, (a : b)2, is not. Moreover, the ratio
a : b itself is not a legitimate object, since it has a mathematical meaning only
in a proportion, say a : b :: c : d. Still, when the area method explores fractions
in terms such as AB

AC
= SP AB

SP AC
or AB

AC
= r, and transforms fractions according to

specific rules, it strongly mimics ancient proportions. To clarify this claim, we
require some basics of Euclid’s Book V.

3.1. Elements, Book V

The theory of proportions, as developed in Book V of Euclid’s Elements, is
founded on definitions 5 and 7. Viewed from the perspective of these definitions,
a proportion is a relation between two pairs of geometric figures (magnitudes)
of the same kind, triangles being of one kind, line segments of another kind etc.
Magnitudes of the same kind form an ordered additive semi-group M = (M,+, <)
characterized by the five axioms given below.

(E1) (∀a, b ∈M)(∃n ∈ N)(na > b).
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(E2) (∀a, b ∈M)(∃c ∈M)(a > b⇒ a = b+ c).
(E3) (∀a, b, c ∈M)(a > b⇒ a+ c > b+ c).
(E4) (∀a ∈M)(∀n ∈ N)(∃b ∈M)(nb = a).
(E5) (∀a, b, c ∈M)(∃d ∈M)(a : b :: c : d).

Here, the term na stands for a+ a+ ...+ a︸ ︷︷ ︸
n−times

; it is, in Euclid’s words, a multi-

ple of the magnitude represented by a. The addition of magnitudes (of the same
kind) as well as the relation greater than are primitive concepts. Through textual
analysis one can show that + is a commutative and associative operation, and <
is a transitive relation that obeys the law of trichotomy.

Axiom E1 interprets definition V.4, the so-called Archimedean axiom. It is
applied once in Book V: in the proof of proposition V.8. It can be shown that the
use of E1 in this proof is essential.7

E4 is implicitly applied in proposition V.5. From the modern perspective, this
axiom is not essential, as it can be derived from the other four axioms. Nevertheless,
it represents, in a concise way, the ancient Greek dogma concerning geometric
objects encapsulated in the following slogan: divisible into parts that are infinitely
divisible. Here, the term nb = a interprets the phrase [a is] divisible into parts;
a recursive procedure of applying E4 to b, then to its parts, and so on, interprets
the phrase infinitely divisible.

Axiom E5 represents the so-called fourth proportional. In Book V, it is ap-
plied in proposition V.5. It is also a building block of the exhaustion method, as
developed in Book XII. Axioms E2 and E3 can be identified all throughout Book
V, specifically in its most intricate propositions, V.8 and V.18.

We interpret Euclid’s definition of proportion, V. def. 5, by the following for-
mula

a : b :: c : d⇔df (∀m,n ∈ N)[(na >1 mb⇒ nc >2 md) ∧
∧ (na = mb→ nc = md) ∧ (na <1 mb⇒ nc <2 md)];

the assumption regarding magnitudes a, b, on the one hand, and c, d, on the other
hand, being of the same kind is formalized by a, b ∈ M1 = (M1,+, <1), and
c, d ∈M2 = (M2,+, <2).

The conjunction that occurs in the definiens above is sometimes shortened into
the following term

na T mb⇒ nc T md.

In fact, it aptly represents the word pattern “when greater than greater [...]
when equal [than ...] equal [...] when less [than ...] less” applied throughout Book
V on regular basis.8

Then, by definition V.7, a relation greater-lesser between pairs of magnitudes
is introduced as follows9

7See (Błaszczyk, Mrówka 2013, pp. 180–181).
8This notation was introduced by H. Hankel in his 1874’s Zur Geschichte der Mathematik in

Altertum und Mittelalter. Then it was employed by Heiberg in his translation of Book V into
Latin.

9Here and in Definition 4 above, we apply the same symbol �. From the mathematical per-
spective, these two relations have nothing in common.
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a : b � c : d⇔df (∃m,n ∈ N)[(na >1 mb) ∧ (nc ≤2 md)].
Now, we present propositions 7 to 25 of Book V. Although they are stylized on

algebra, the only purpose of this modern attire is to reveal the similarities between
proportions and the arithmetic of fractions. Equality as it occurs below, stands for
equal figures, as explained in (Błaszczyk, 2018).

V.7 a = b→ a : c :: b : c, a = b⇒ c : a :: c : b.
V.8 a > c⇒ a : d � c : d, a > c⇒ d : c � d : a.
V.9 a : c :: b : c⇒ a = b.

V.10 a : c � b : c⇒ a > b, c : b � c : a⇒ b < a.

V.11 a : b :: c : d, c : d :: e : f ⇒ a : b :: e : f
V.12 a : b :: c : d, a : b :: e : f ⇒ a : b :: (a+ c+ f) : (b+ d+ f).
V.13 a : b :: c : d, c : d � e : f ⇒ a : b � e : f.
V.14 a : b :: c : d, a > c⇒ b > d.

V.15 a : b :: na : nb.
V.16 a : b :: c : d⇒ a : c :: b : d.
V.17 (a+ b) : b :: (c+ d) : d⇒ a : b :: c : d.
V.18 a : b :: c : d⇒ (a+ b) : b :: (c+ d) : d.
V.19 (a+ b) : (c+ d) :: a : c⇒ b : d :: (a+ b) : (c+ d).

V.20 a : b :: d : e, b : c :: e : f, a T c⇒ d T f.

V.21 a : b :: e : f, b : c :: d : e, a T c⇒ d T f.

V.22 a : b :: d : e, b : c :: e : f ⇒ a : c :: d : f.
V.23 (a : b :: e : f, b : c :: d : e)⇒ a : c :: d : f.
V.24 a : c :: d : f, b : c :: e : f ⇒ (a+ b) : c :: (d+ e) : f.
V.25 (a : c :: e : f, a > c > f, a > e > f)⇒ a+ f > c+ e.
When a : b :: c : d is replaced with a

b = c
d , and a : b � c : d with a

b >
c
d ,

the above propositions will turn into simple, but random, rules of the arithmetic
of fractions, given a, b, c... are positive. Since proportions and fractions rely on
different foundations, it is not surprising that Euclid needs axiom E1 to prove V.8,
while the law a > c ⇒ a

d >
c
d , given d > 0, holds in any ordered field, regardless

of whether it is Archimedean or non-Archimedean.
We apply fractions in the area method, insofar as they represent the operations

studied in Book V. For example, the following paraphrase of proposition V.9

a

c
= b

c
⇒ a = b

is legitimate. However, this one

a

b
= c

d
⇒ a = b · c

d
,
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is not. To put it briefly, any transformation of fractions must be justified by the
above propositions V.7 to V.25.

Note there is one obvious difference between objects SABC and Euclid’s tri-
angles: signed areas of triangles form an additive ordered group (F,+, 0, <), while
magnitudes of the same kind, specifically, triangles, form an additive ordered semi-
group (M,+, <). To put it simply: within Euclid’s framework, there are neither
zero- nor negative-triangles.

The idea that SABC can take negative values is represented in axioms A2, A3,
and A6. In fact, A6 describes the basic relation for the area method when provides
foundation for automated proofs in synthetic geometry. In fact, it was designed
for this specific role. But in what follows, we will not explore these three axioms
at all. To revise Euclid’s proportion and reconstruct his propositions and proof
technique, we need to adopt a tiny portion of the area method.

Contrarily, Hilbert’s arithmetic of segments, as developed in (Hilbert, 1902, ch.
3), mimics Euclid’s language, but applies technique foreign to Greek mathematics.
For instance, his theorem 23 simulates Euclid’s VI.2. The theorem reads (Hilbert,
1902, p. 52):10

If two parallel lines cut from sides of the arbitrary angle the segments a, b and a′, b′
respectively, then we have always the proportion

a : b = a′ : b′.

The term a : b = a′ : b′, in Hilbert’s words, “expresses nothing else than the
validity of the equation” ab′ = ba′. Here, ab stands for a specifically introduced
product of segments.11 For the first time in the history of mathematics, the idea
of a product of two line segments represented by another line was introduced in
Descartes 1637’s La Géométrie. Hilbert’s definition of product builds on a differ-
ent idea, nevertheless, the product of two lines is another line, and this concept
of product is foreign to the ancient Greeks mathematics. Clearly, Hilbert’s defi-
nition of proportion cannot be applied to other figures than segments. Therefore
within his system we can not reconstruct Euclid’s proofs, specifically the proof of
proposition VI.2, since it involves a proportion of triangles.

Robin Hartshorne, specifically in chapters 4–5 of his (Hartshorne, 2000), seeks
to develop Hilbert’s project further to reconstruct Book VI of the Elements. Since
he applies Hilbert’s proportions, he can not reinterpret the starting point of this
book, that is proposition VI.1. Indeed, he writes: “Having developed the theory of
proportion abstractly in Book V, Euclid proceeds to apply his theory to geome-
try in Book VI, and develops what we recognize as the familiar theory of similar
triangles. The key result here, which forms the basis of the subsequent develop-
ment, is (VI.2), which says that a line parallel to the base of a triangle, if it cuts
the sides, cuts them proportionately, and conversely. Euclid’s proof is a tour de
force, using the theory of area previously developed in Book I to establish this
result”(Hartshorne, 2000, p. 167). In fact, most of the results of Book VI can be

10The converse of this theorem also holds in Hilbert’s system.
11For details on how Hilbert defines the product of line-segments, consult (Hilbert, 1902, ch.

3) or (Baldwin, Mueller, 2019, § 3.).
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derived from proposition VI.2. However, propositions VI.31, which crowns the an-
cient Greek theory of similar figures, via VI.20 relies on VI.1. While proposition
VI.1 explicitly refers to proportions of triangles and parallelograms, it can not be
interpreted by Hilbert’s proportion.

Why then Hartshorne seeks to developed alternative to Euclid’s proportion
theory. Here are his reasons: “There are two reasons for us to seek an alternative
development of the theory of similar triangles: One is to free ourselves from depen-
dence on Archimedes’ axiom, and the other is to avoid Euclid’s use of the theory
of area, which we have not yet treated satisfactorily” (Hartshorne, 2000, p. 167).

Euclid’s theory of equal figures is developed with no reference to Archimedean
axiom.12 Yet, Archimedean axiom is essential in his theory of proportion, since we
can show that without this axiom proposition V.8, the backbone of this theory, can
not be proved.13 However, in our interpretation, Euclid’s propositions V.7–V.25 are
modeled by fractions in an ordered field, be it Archimedean or non-Archimedean.

3.2. The Starting Point of Book VI

In Book VI, Euclid refers explicitly to definition V.5 only once, namely in
the proof of proposition VI.1. It is about parallelograms and triangles “between
the same parallels”. In regard to triangles, it reads
“Let ABC and ACD be triangles, [...] of the same height AC. I say that as base
BC is to base CD, so triangle ABC (is) to triangle ACD”.

H L

A

CG B D K

E F

Fig. 4. Elements, VI.1.

We formalize it as follows

4ABC : 4ADC :: BC : DC. (1)

Euclid’s proof is cumbersome, to say the least; it applies non-defined concepts
of the addition of triangles encoded in the notion of multiple and requires to com-
pare triangles in terms of greater-lesser. The accompanying diagram is to represent
relations 4AHC = 34ABC, and 4ALC = 34ADC. Somehow, we are to decide
that 4AHC < 4ALC whenever HC < LC. We can get rid of deliberations of

12See (Błaszczyk, 2018).
13See (Błaszczyk, Mrówka, 2013, pp. 180–181.
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this kind by accepting (1) as an axiom. That is how, instead of proposition (1),
we adopt axiom A10

SABC
SADC

= BC

DC
. (2)

In the next section, we show how to derive other propositions of Book VI from
axioms A1 to A12.

3.3. Sample Propositions. VI.2

We start with Euclid’s proposition VI.2, the so-called Thales theorem. The
English translation reads:

Theorem 3
If some straight-line is drawn parallel to one of the sides of a triangle then it
will cut the sides of the triangle proportionally. And if the sides of a triangle are
cut proportionally then the straight-line joining the cutting will be parallel to the
remaining side of the triangle.

B

C

A D

E

Fig. 5. Thales Theorem.

First, we present Euclid’s proof in a schematized form. To this end, we apply
standard symbols such || or ⊥, meaning parallel or perpendicular lines respec-
tively. Second, we use specific symbols, such as −−→

I.38
. Here, the arrow represents

the connective “for” rather than the logical implication, and the subscript I.38
means that there is a reference to proposition I.38; in the Elements, references are
rendered by some characteristic phrases. Thus, the first two sentences of Euclid’s
proof, namely: “Thus, triangle BDE is equal to triangle CDE. For they are on
the same base DE and between the same parallels DE and BC”, we represent by
the following scheme

DE‖BC −−→
I.38

4(BDE) = 4(CDE).

In fact, to simplify the presentation, we skip the assumption that triangles
BDE and CDE are “on the same base DE”.

Euclid’s second argument is covered by three sentences, namely: “And ADE
is some other triangle. And equal have the same ratio to the same. Thus, as



Euclid’s theory of proportion revised [53]

triangle BDE is to ADE, so triangle CDE (is) to triangle ADE”. Here, the second
sentence literally cites the thesis of proposition V.7. Thus, in accordance with the
conventions we adopted, we turn this argument into the following scheme

4(BDE) = 4(CDE) −−→
V.7

4(BDE) : 4(ADE) :: 4(CDE) : 4(ADE).

Euclid’s next argument is this: “But, as triangle BDE (is) to triangle ADE,
so (is) BD to DA. For, having the same height – the (straight-line) drawn from E
perpendicular to AB – they are to one another as their bases”. We represent this
with the following scheme

E⊥AB −−−→
V I.1

4(BDE) : 4(ADE) :: BD : DA,

where E⊥AB represents the the stipulation “having the same height – the
(straight-line) drawn from E perpendicular to AB”.

We represent the first part of Euclid’s proof as follows:

DE‖BC −−→
I.38

4(BDE) = 4(CDE)

4(BDE) = 4(CDE) −−→
V.7

4(BDE) : 4(ADE) :: 4(CDE) : 4(ADE)

E⊥AB −−−→
V I.1

4(BDE) : 4(ADE) :: BD : DA

−→
δ

4(CDE) : 4(ADE) :: CE : EA

−−−→
V.11

BD : DA :: CE : EA.

Here, the letter δ represents the phrase διά τά ἀυτά (for the same reason).
The second part of Euclid’s proof, that is, from proportionality to parallel

lines, is as follows

BD : DA :: CE : EA,
BD : DA :: 4(BDE) : 4(ADE),
CE : EA :: 4(CDE) : 4(ADE) −−−→

V.11
4(BDE) : 4(ADE) ::

:: 4(CDE) : 4(ADE)
4(BDE) : 4(ADE) ::
:: 4(CDE) : 4(ADE) −−→

V.9
4(BDE) = 4(CDE)

4(BDE) = 4(CDE) −−→
I.39

DE‖BC.

Now we present a proof within the area method. To underline the analogy, we
number the steps in this proof.

[1] From the assumption DE ‖ BC, by definition we get the equality of signed
areas SDEB = SDEC .

[2] By the rules of an ordered field,

SDEB
SDAE

= SDEC
SDAE

.
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[3] By A2, we can permute the names of vertexes, then by A10, the following
qualities obtain

SBDE
SDAE

= BD

DA
,

SCDE
SDAE

= CE

EA
.

[4] By transitivity of equality in an ordered field,

BD

DA
= CE

EA
.

Similarly, we can turn this proof into the following scheme

DE‖BC −−−→
Df2

SDEB = SDEC

SDEB = SDEC −→
fr

SDEB
SDAE

= SDEC
SDAE

−−−−−→
A2,A10

SDEB
SDAE

= SEBD
SEDA

= BD

DA

−−−−−→
A3,A10

SDEC
SDAE

= SDCE
SDEA

= CE

EA

−→
fr

BD

DA
= CE

EA
.

In this scheme, the abbreviation fr stands for by the arithmetic of fractions,
Df 2 – represents Definition 2, and A10 – axiom A10, as presented in sections
§ 1.1–1.2 above.

For the proof of the second part, suppose BD

DA
= CE

EA
.

[1] By A10:
SBDE
SDAE

= BD

DA
,
SCED
SAED

= CE

AE
.

[2] By transitivity of equality:

SBDE
SDAE

= SCED
SAED

.

[3] By axiom A2, SDAE = SAED. By applying the arithmetic of an ordered
field to the above equality, we have

SBDE = SCED.

[4] By definition of parallel lines, DE ‖ BC.
�

The schemes of Euclid’s proof and the area method proof are almost identical.
The only difference is that, within the area method, we must respect the order of
end-points of line segments and the vertexes of triangles.
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3.4. Sample Propositions. VI.19

We proceed to Euclid’s proposition VI.19. The English translation reads: “Sim-
ilar triangles are to each other as the double ratio of corresponding sides”.

Since “ratio of corresponding sides” means the similarity scale, “double ra-
tio of corresponding sides” means, in modern terms, the square of the similarity
scale. Let triangles ABC and EDC, as represented in Fig.6, be similar. Thus, the
similarity scale is (informally) AB

DE or BC
EF . Within Euclid’s framework, it could be

rendered as follows AB : DE :: BC : EF . The square of the similarity scale, say
(BC : EF ) is not a legitimate object, therefore Euclid constructs point G such
that the proportion obtains

BC : EF :: EF : BG,

or, informally, again

BC : BG = (BC : EF )(EF : BG) = (BC : EF )(BC : EF ).

Hence, in the scheme below, the term (BC : EF )2 stands for “double ratio of
corresponding sides”. Thus, we paraphrase proposition VI.19 as follows

Theorem 4
Similar triangles are to each other as the square of the similarity scale:

4(ABC) : 4(DEF ) :: BC : BG.

CE F

D

B

A

G

Fig. 6. Theorem 5.

Here is the scheme of Euclid’s proof.

AB : BC :: DE : EF −−−→
V.16

AB : DE :: BC : EF

BC : EF :: EF : BG −−−→
V.11

AB : DE :: EF : BG

AB : DE :: EF : BG −−−−→
V I.15

4(ABG) = 4(DEF )

BC : EF :: EF : BG −−−−→
df.V.9

BC : BG = (CB : EF )2

CB : BG :: 4(ABC) : 4(ABG) −→ 4(ABC) : 4(ABG) = (BC : EF )2

4(ABG) = 4(DEF ) −→ 4(ABC) : 4(DEF ) = (BC : EF )2.
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Now, a scheme of a proof within the area method.

AB

BC
= DE

EF
−→
fr

AB

DE
= BC

EF

BC

EF
= EF

BG
−→
fr

AB

DE
= EF

BG

BC

EF
= EF

BG
−−−−→
V I.15

SBDE
SDAE

= BD

DA

BC

EF
= EF

BG
−→
fr

BC

BG
= EF

2

BG
2

−−−−−→
A2,A10

SACB
SAGB

= SABC
SABG

= BC

BG

SACB
SAGB

= BC

BG
−→
fr

SACB
SAGB

= EF
2

BG
2

SABG = SDEF −→
fr

SACB
SDFE

=
(
EF

BG

)2

.

�
One step is missing in this scheme: since we skipped the proof of proposition

VI.15, we ask the reader to take it for granted.

4. Co-side Theorem

The so-called Co-side theorem is fundamental within the area method. It
states:

Theorem 5
For four distinct points A,B, P,Q, let M be the intersection of the lines AB and
PQ such that Q 6= M . Then the following equality obtains

SPAB
SQAB

= PM

QM
.

Below we present two proofs. The first comes from (Chou, Gao, Zhang, 1994,
p. 8–17). It builds on an arithmetic trick to represent the fraction SP AB

SQAB
as the

product of three other fractions, namely SP AB

SP AM
, SP AM

SQAM
,
SQAM

SQAB
. Then, due to axiom

A10, these ratios of triangles are reduced to ratios of line segments, namely14

SP AB

SP AM
= AB

AM
, SP AM

SQAM
= PM

QM
, and SQAM

SQAB
= PM

QM
.

Proof 1.
SPAB
SQAB

= SPAB
SPAM

· SPAM
SQAM

· SQAM
SQAB

= AB

AM
· PM
QM

· AM
AB

= PM

QM.

14In fact, this trick can also be performed within the framework of Book V.
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Fig. 7. Co-side theorem.

�

The next proof considers four cases, represented in Fig. 7, depending on whether
or not M lies between P,Q and between A,B. We base it on proposition VI.1
of the Elements as well as propositions from Book V which enable to transform
ratios, specifically these two modifications

V.12’
a : b :: c : d⇒ a : b :: (a+ c) : (b+ d)

V.19’
(a+ b) : (c+ d) :: a : c⇒ b : d :: a : c,

and V.11, that is transitivity of proportion.
Regarding proportions, we observe that within the framework of Book V, there

is no universal rule that covers all these four cases; each cases refers to a specific
proposition of Book V, namely V.12 or V.19.

Although we apply fractional notation, the proof is carried out within Euclid’s
framework. In this way, we aim to demonstrate that the insight behind the Co-side
theorem can be tackled by the original theory of proportion.

In figures Fig. 8–11 below, we use symbols S1, ..., S4 to represent triangles.
They are used to ease the reading of formulas applied in the proof.

Proof 2.
Case 1. Point M lies between P, Q and between A, B.
By proposition VI.1, we have the following equalities (proportions)

S1

S3
= PM

QM
,
S2

S4
= PM

QM
.

Applying transitivity of proportion and V.12’, we get

S1

S3
= S2

S4
= S1 + S2

S3 + S4
= PM

QM
.

Since
S1 + S2 = SPAB , S3 + S4 = SQAB ,
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A

P

Q

BM

S1 S2

S3 S4

Fig. 8. Co-side theorem, case 1.

finally, the required equality obtains, namely

SPAB
SQAB

= PM

QM
.

Note, when B = M , the Co-side theorem is the same as Euclid’s VI.1, namely

A

P

Q

M = B

S1

S3

Fig. 9. Co-side turns into VI.1.

SPAB
SQAB

= PB

BQ
= PM

MQ
.

Case 2.
Point M lies between A, B, but not between P, Q; see Fig. 10.

A

P

Q

BM

S1 S2

S3 S4

Fig. 10. Co-side, case 2.
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By VI.1
S1 + S3

S3
= PM

QM
= S2 + S4

S4
.

Applying V.12’ to the above equalities, we get

S1 + S2 + S3 + S4

S3 + S4
= PM

QM
.

Hence,
SPAB
SQAB

= PM

QM
.

Case 3.
Point M lies between P, Q and not between A, B; see Fig. 11.

A

P

Q

M
B

S1 S2

S3 S4

Fig. 11. Co-side, case 3.

By VI.1
S1 + S2

S3 + S4
= PM

QM
= S2

S4
.

Applying VI.19’ to theses equalities, we get

S1 + S2 − S2

S3 + S4 − S4
= S1

S3
= PM

QM
.

Hence,
SPAB
SQAB

= PM

QM
.

Case 4.
Point M does not lie between P, Q and between A, B; see Fig. 12.
By VI.1

SPAB + SPBM
SQAB + SQBM

= PM

QM
= SPBM
SQBM

.

By VI.19’, finally, we have

SPAB
SQAB

= PM

QM
.
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A

P

Q

B M

Fig. 12. Co-side, case 4.

�

To sum up, in Euclid’s VI.1, the co-side requirement is to guarantee that
the triangles are of the same height (“between the same parallels”), while their
bases can differ. In the Co-side theorem, triangles have a common base, while
their heights can differ. Since in modern mathematics, the choice of the base of
a triangle is conventional, we have co-side rather than co-base theorem.

Euclid’s VI.1 enables to reduce the geometric pattern represented in the dia-
gram Fig. 4 to the proportion of lines given by formula (2). The Co-side theorem
provides us with four more geometric patterns, which can be reduced to the propor-
tions of lines. We will show how to exploit these new patterns in school geometry
lessons in a forthcoming paper.
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