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Abstract. The paper presents, among others, the golden number ¢ as the
limit of the quotient of neighboring terms of the Fibonacci and Fibonacci
type sequence by means of a fixed point of a mapping f(z) = 1—1—% of a certain
interval with the help of Edelstein’s theorem. To demonstrate the equality
limy 00 fnt1 ¢, where f, is n-th Fibonacci number also the formula
from CorolTILary 1 has been applied. It was obtained using some relationships
between Fibonacci and Lucas numbers, which were previously justified.

1. Introduction

Leonardo Fibonacci invented its sequence around 1200, dealing with the issue
of rabbit population growth. Mathematicians began to discover more and more
interesting properties of Fibonacci numbers being terms of its sequence. Edouard
Lucas, creator of the Towers of Hanoi puzzle, conducted detailed research on these
numbers in the second half of the 19th century. Lucas popularized the name of
the Fibonacci numbers and he is also the creator of the sequence called his name.
This sequence is an example of Fibonacci type sequence. It is worth adding that,
using the property of Fibonacci numbers, he proved that the number of Mersenne’s
2127 _ 1 is the prime number.

In this article we will present some basic properties of Fibonacci and Lucas
numbers and the golden number. We will prove in a simple way compact formu-
las expressing Fibonacci numbers and the numbers of Lucas sequence using the
golden number. We will also present facts about the convergence of the quotient
of consecutive terms ( n-th to (n — 1)-th) of the Fibonacci type sequences to the
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golden number using a fixed point of a mapping f(z) = 1+% which is a contractive
mapping of certain interval. An indirect effect of the fixed point of f can be seen
in the case of the above convergence for the Fibonacci type sequence. In addition,
we will discuss various methods of proving convergence to the golden number.

2. Examples of Fibonacci type sequences and the convergence
of quotients of terms of the sequences mentioned

DEFINITION 1
A golden section of the segment of length d is called a division into smaller sections
of lengths © and d — x, in which

d x

r d—x

By solving the quadratic equation 22 + dz — d? = 0 resulting from the above
equation we get x = d@ and a golden proportion %, which is expressed in the
golden number

V5+1
T

~ 1,6180339887...

DEFINITION 2

For a given rectangle with side lengths in the ratio 1 : x, we will call the golden
proportion of the only ratio 1 : ¢ at which the original rectangle can be divided into
a square and a new rectangle which has the same ratio of sides 1 : .

DEFINITION 3
The golden rectangle is called a rectangle in which the ratio of the lenght of its
sides is 1: .

Directly from this definition we get a quadratic equation
2 —r—1=0,

and thus for x > 1 we have z = .
Let p = =L = 1*2\/g,then
@

P —r—1=(x—¢)(r—¢)=0.

Therefore ¢ = ¢ + 1 and ¢? = ¢ + 1. Consequently,
(pn — (pn—l 4 (pn—27 (ﬁn — (,5"_1 + @71,—2, n> 2. (1)

DEFINITION 4
Fibonacci sequence is a sequence defined recursively as follows:

fl :f2:17fn+1 :fn—l+fnan22

(sometimes formally accepted fo = 0 and then the recursive formula is valid for
n>1).
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DEFINITION 5
Fibonacci numbers are called consecutive terms of the sequence (f).

Let us consider the following sequence:
0,1,1,2,3,5,8,13, ...

By recurrence
Jo=0,fi=1fon=fo1+ fon2,n>2. (2)

We will now sketch the proof of the following formula:

1
n— "= niAn7nZO~ 3
=7 (" =) 3)
For n =0 we get fo = 0. For n =1 we get correctly f; = % (¢ — ) = 1. For
the higher powers we use (1) and by induction we confirm validity of (3).

REMARK 1
We will show how to get the formula (3) and confirm its truth. Using the following

formula:
k
fi—a <1+2\/5> b (1 —2\/5>

for k=0 and k = 1 we have:
1-+5 1
2 - )
k

0 %,b:;; fe= 7% (( 2\/5> (1_2\/5>k>'

Therefore we get fi, = % ((pk — (ﬁk)-

We will now show that the obtained result is always true. For k = 0,1 we have
fo = 0,f1 = 1. Assuming that equality f,, = % (™ — @™) is true for every

m <k (m >0) we show that fr11 = % ("t — @F ). Based on formula (1) we

k

1
a+b:0,a< +\/5)

2
1

+b
thus
1+

have

Jut fi-1 = % (¥ = &%) + % (PP —@h ) =
L 49 e

In this way we proved the truth of formula (3).

REMARK 2

Since |1_2\/5| < 1, we see that limy_,oo * = 0 and fi, is the nearest integer to

%g@k. From Lawrynowicz i inni, 2018 we have @ = \/1 —Vv1i—v1—...
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which is equivalent ¢ = —\/1 — \/f The equation ¢? = 1+ ¢ pro-
duces a root \/1 — \/1—\/? = lim,, oo 4y (by definition), where sequence
(A,) is defined by Ay = /1 — %,A,H_l =+1—-A, (n>1). Because the sequence
(A,,) is monotonic and bounded, so lim, ., A, = A, moreover AfL_H =1-A4,.
Therefore we get A> =1 — A, and hence A = @ To demonstrate the equal-

ity @ = \/1 —v1—=+4/1—... (without proof in Lawrynowicz i inni, 2018),
we raise both sides of equality A = \/1 — /1 —=+V1—=_... to square. We get A?> =
1—vV1—-y1—...=1-A, so we have equality A2+ A—1=0, hence A = @

Also from ¢? = 1+ ¢ we can get p = \/1—|— V14 V1+ ... in a similar way; here
A = \ﬁzAnJrl = V1+An

We have more:

DEFINITION 6
A sequence (Fy,) of the form Fy,4q1 = F,, + Fj,_1,n > 2, where Fy and Fy are given
positive integers we call a Fibonacci type sequence.

For example, this sequence is the so-called Lucas sequence (I,,):
1,3,4,7,11,18,29, . ..
These numbers can be described by a formula
h=1101=3lpt1 =1l +lp—1,n>2.
By using induction, we notice that
lny1 = fn+ faye (4)

Now using the formula (4) we get

fo+ln
2

fn-i-l = (5&)

and hence the generalization using recursive formulas for (f,,) and (I,,) in induction
relative to m

Futm = 5l + b f) (5b)
Using (4) we get from here
fner = fmfnJrl + fn—1fn- (50)

Based on formula (5¢) we get by putting m = n equality fo, = fofot1+ fo-1fn =
(fn+1 + fnfl)fn = lnfn Finauy we have

f2n = lnfn (Tl > 1)- (5d)
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REMARK 3

Based on the formula (5c) assuming m = n + 1 you can get equality fo,+1 =
f2+ f2,, (n > 1), while using (5d) we get fon, = fn(2fn1 + fn) (n > 1).
Let’s add that both obtained formulas are useful when finding a specific term in
a Fibonacci sequence using a calculator or a computer.

By creating a sequence of proportions (), where x,, = f’}“, we get
1
T, =1+ 6
" Tn—1 ( )

and consequently assuming that this sequence is convergent

. 1 1
g:hmxnzl—&—i:l—i—f
g

n—00 limy, 00 Tn—1

From identity fn+1 = @fn + @™, which will be presented in Corollary 1, we have

lim z, = lim Jni1 = lim (gaJr S;) =

n— oo n—oo n n

because lim,,_, o ?—: = 0, so this sequence is convergent. Moreover, g = ¢.

An other proof of convergence of the sequence (z,) will be shown further in
the proof of Theorem 2(a).

The following Edelstein’s theorem will be useful

THEOREM 1

(Goebel, 2005, Edelstein, 1962) Let X be a compact metric space and let f : X — X
be a contractive mapping, that is d(f(z), f(y)) < d(z,y) for all x #y in X. Then
f has a unique fixed point. Further, for any x € X, the iterative sequence (f™(x))
converges to the fized point.

Let C = (1,2¢ — 1). The map f specified on C' by a formula f(z) =1+ + meets
the conditions:

2¢_ > 1 and

1° f(C) C C, bacause f is decreasing and f(2p —1) =1+ 2;_1 = 5.5

fA)=2<2p-1;

_ Jz—2']
- zx’

2° for cach 2’ € C|f(x) — f(')| = [ - %
2’ > 1 either 2’ >z > 1.

< |z — 2’|, because x >

Therefore using Theorem 1 we can get the following

LEMMA 1
Let C = (1,2¢p — 1). The mapping f : C — C, f(x) =1+ %, has a unique fized
point w, and lim,_, o T, = u = @.

Dowdd. Tt is easy to see that the sequence (x,,), x, = % = 1+$ (n>1),

starting from zg = % € C can be described by the formula x,, = f™(z(). Because

f: C — C is a concractive mapping (from the condition 2°), so by Edelstein’s
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theorem (Theorem 1) f has a unique fixed point u € C. Because u = 1 + %, S0
u = . Further the iterative sequence (f™(xg)) converges to u. We finally have
limy, oo Tn = u = @.

REMARK 4

The result: & = ¢ = limy, o0 T, can also be obtained by using the Darboux property
and knowing that f, f(x) =1+ %, is a continuous mapping of the interval C =<
1,20 — 1 > into itself.

Indeed, let g(x) = x — f(x). Then

gl)=1—-f(1)=1-2<0,

1 p—
20—1

92 —1)=2p—-1-f(2p—-1)=2p-1-1-

1
>2(p—1)— — > 0.

=2¢p—2—
2(p—1)

20 -1
So there is a point & € C, that g(&) = 0. It means that & — % — 1 =0, therefore
=,

because f is a decreasing map.

The rest of the proof is obvious because the iteration method for the equation g(x) =
0 is always convergent, independently of the choice of point x, € C, and the half
dividing method immediately gives the root of this equation.

Consider the sequence (b,,), where b,, = 2f,,11; this is sequence:
2,4,6,10,...

The corresponding sequence of proportions (p,,) has a form

p = fr— fr—
" bn 2fnt1 fugr

For Lucas sequence (I,) we have a sequence of proportions (g,) defined by

% Because b, = f, + 1, (from (5a)), so l,, = b, — f,,. Therefore

bTL 2 n n
41 2fnt2  fag2 — ™

equality ¢, =

_ bag1 — fag
qn = by — fn . (8)

THEOREM 2
The following equality occurs:

(a) lim, 00 Tn, = @,

(C) limy, 00 gn = .
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Dowdd. (a) Other proof of this point (based on Corollary 1) has been pro-
vided earlier. We can also get it by showing the monotonicity and boundedness
of the subsequences (z2,) and (z2,+1) of the sequence (z,,), which will cause
the convergence of the sequence (z,) to the limit equal to the limit of both
subsequences, and as a consequence we will get the limit of the sequence (x,,)
equal to ¢ (see Fory$, 2014). Instead, we will use Lemma 1. Under this Lemma
we get limy, 00 T, = .

(b) results from (a).

(c) We already know that the sequence of quotients ljzl , i.e. the sequence (gy,) is

— Ont1—fntr
specified by ¢, = == = —pep
. o bng1—fn
We have the following equality in the case of the numerator +1f7f+1 =
2fn42
O fr i fr - . b1 —Ffn
f+zf+1:f£1_If%sogﬂTLﬂlgmﬂ—@atn%oo
n Frnt1 " "

In the case of the denominator we have % =bt 1= 2’}’—“ —1—=2p—1at
n — oo.
Therefore lim,, oo ¢, = lim,, s

THEOREM 3
ln=9"+@", n>1, wherel, is an n-th Lucas number given by l,, = frn—1+ frnt1-

Dowdd. (Version 1) Based on (5d) and (3) we get

f2n \/5 (pn—’_@n n AN f2n n AN
ln:ﬁ:f%m:fznm\/gz(w + )E:@ +e

(Version 2) We can prove this theorem using the following formula [,, = ap™+ 55"
and based on the recursive definition of the sequence (I,,): lp = 2,1 = 1,1, =
ln—1+ l,—o for n > 1. We have a system of equations

a+pB=2
ap+pBp=1

ap+(2-a)p=alp-¢)+20=1,

Thus 8 =2 — « and

from this
1-24

NG =1,8=1.

o=

Therefore
ln ="+ "
We will now show that obtained result is always true.
For n = 0,1 we obviously have lp =2, = o+ ¢ =1.
Assuming that 1, 1 = " 1+ @" L, o0 = "2 +¢" 2 (n > 1) we get by (1)
ln—l + ln—2 — (<pn—1 + (pn—Q) + (@n—l + @n—Q) — SOn + @n — ln
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LEMMA 2

©" =¢fn+ fa—1,n > 1.

Dowdd. For n =1, we get correctly o = fip + fo.
Assuming the equality "' = ¢f, 1 + fu_2 (n > 2) and multiplying both sides
of this equality by ¢ we get

O = fur + Pfn2 =0+ D fn1 + @faa = @fn + fa_1.

COROLLARY 1

fn+1 = prn _’_¢n7n > 0.

Dowéd. From Lemma 2 we have ¢f, = ¢" — f,—1 for n > 1. Based on
Theorem 3 we have
©" = fn-1 = for1 — 0",
SO
ofn = fny1 — 0"
For n =0 we get
fi=1=g¢fo+¢"

Finally
fn+1 = Qofn + @n

REMARK 5

For three sequences (fy),(bn) and (1), it can be shown that the quotients of
neighboring terms tend to number ¢ finding a unique fized point of the function
flay=1+ % specified on the interval < 1,2¢ —1 > and applying Lemma 1 to the
appropriate quotients. For example, for Lucas’ sequence we have

1
qn—1"

1

ln ln+ln— ln
“—%:1—1— , hence ¢, =1+

L
We get g, = f(qn—1), where f(q) =1+ %.
REMARK 6

For three sequences (fy,), (b,) and (1), which are Fibonacci type sequences, we can
show the convergence of quotients (), (pn) and (gy) using a compact form of n-th
terms of this type sequences.

For example for the sequence (by) , b, = %(gp”“ — @™t (n > 1), we have

2 (,n+2_ snt2 Al yn+1
brt1 Z=(p Aany e—¢(E) ) 1
e _ = : — S £l = = 1.
i L ) e » (as n — 00), bacause |¢| o <

Therefore lim,,_, o pn = .
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Now we will present the relationship between the number ¢ and dependence
(6) using the concept of a continued fraction for the golden ratio ¢. We know that

p=1+ %. Therefore in the continued fraction [ag;aq,...] = ag+ ﬁ all the
ag+...

quotients ag, aj, as, ... are equal to 1. Thus the number ¢ represents the continued

fraction [1;1,1,...]. Based on the continued fraction corresponding to ¢ we can

also give the form of the continued fraction for é:

1
—=10;1,1,...].
" [ ]

Taking into account that moving one space does not change the structure of
this fraction, we get a recursive relationship

Therefore lim,, oo n, = .

Now we will present examples of Fibonacci type sequence in conjunction with
the golden number.

Let us consider the sequence (¢,), where ¢, = f,—1 + fn+3; this is sequence
3,6,9,... It is easy to see that f,_o+ fni2 = 3fn (n > 2). Indeed fr,—o + fri2 =
fn - fnfl + fn+1 + fn = an
Now for r,, = % we have r, = ?’:f‘n% }cnﬁ = .

The sequences (fy), (bs) and (¢,) are special cases of the sequence (g, ), where
gn = kfns1 (k is a fixed positive integer).

Forsn:MWehavesn:j:"—ﬁ—)goatn—)oo.

and lim, oo 7, = lim, oo

9n
Of course, (g,) is Fibonacci type sequence and lim,,_,

The above results can be generalized in the form of

gn+1 __

g P

THEOREM 4

lim X,, = ¢,
n— oo
where @
Xn - ;1:1 I n 2 1

Dowdd. Let’s assume that F} = A and F; = B, where A and B are positive
integers. Based on the definition on the Fibonacci type sequence we have: F3 =
A+ B, Fy = A+ 2B, F5; =2A+ 3B,... Given the definition on the Fibonacci
sequence we have from here:

Fs=Afi +Bfy, Fs=Afo +Bfs, F5s =Afs + Bfs,...

Using the recursive formula F,,11 = F, + F,,—1 (n > 2),F} = A, F5 = B, is easy
to show that

Fn+1 = Afn—l + Bfn
Therefore

o Afn—l +Bfn _ A—l—Bl‘n_l 5 A+B(p
" Afp—o+ Bfaot A1 B 448

Tp—2

(n — o0)
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5+1

by Theorem 2 (a). Because ¢ = ¥, so
A+Bpe A+BY3 244 BV5+B V541 VB 41
A = 24 = ’ =
S+B Fo+B 2 2A+ B\V5+ B 2
Finally
lim X,, = .
n—oo
REMARK 7

Convergence to the number ¢ of the iterative sequence (X,,) given by the formula
X, = [™(Xo), Xo = % > 1, also we get based on a slightly modified Lemma
1, when instead of C' we take K = (1, M), M > 2, and the mapping [ is still
defined by the same formula as in Lemma 1, while f(K) C K (because f(M) > 1
and f(1) = 2 < M ). The proof of this version of the Lemma 1 is still based on

FEdelstein’s theorem.

REMARK 8
( LREn.d.) A generalized version of Fibonacci numbers has recurrence

Gn = Gn—l + Gn—Q

with Gy = a and G = b, where a,b > 0 has solution by G, = 1[(3a — b) f,, + (b —
a)l,].

Of course, every Fibonacci type sequence is included in the generalized version of
Fibonacci numbers.
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