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Abstract. The paper presents, among others, the golden number ϕ as the
limit of the quotient of neighboring terms of the Fibonacci and Fibonacci
type sequence by means of a fixed point of a mapping f(x) = 1+ 1

x
of a certain

interval with the help of Edelstein’s theorem. To demonstrate the equality
limn→∞

fn+1
fn

= ϕ, where fn is n-th Fibonacci number also the formula
from Corollary 1 has been applied. It was obtained using some relationships
between Fibonacci and Lucas numbers, which were previously justified.

1. Introduction

Leonardo Fibonacci invented its sequence around 1200, dealing with the issue
of rabbit population growth. Mathematicians began to discover more and more
interesting properties of Fibonacci numbers being terms of its sequence. Édouard
Lucas, creator of the Towers of Hanoi puzzle, conducted detailed research on these
numbers in the second half of the 19th century. Lucas popularized the name of
the Fibonacci numbers and he is also the creator of the sequence called his name.
This sequence is an example of Fibonacci type sequence. It is worth adding that,
using the property of Fibonacci numbers, he proved that the number of Mersenne’s
2127 − 1 is the prime number.

In this article we will present some basic properties of Fibonacci and Lucas
numbers and the golden number. We will prove in a simple way compact formu-
las expressing Fibonacci numbers and the numbers of Lucas sequence using the
golden number. We will also present facts about the convergence of the quotient
of consecutive terms ( n-th to (n − 1)-th) of the Fibonacci type sequences to the
∗2010 Mathematics Subject Classification: Primary: 11B39; Secondary: 97A30
Keywords and phrases: Fibonacci numbers, Lucas numbers, golden number
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golden number using a fixed point of a mapping f(x) = 1+ 1
x which is a contractive

mapping of certain interval. An indirect effect of the fixed point of f can be seen
in the case of the above convergence for the Fibonacci type sequence. In addition,
we will discuss various methods of proving convergence to the golden number.

2. Examples of Fibonacci type sequences and the convergence
of quotients of terms of the sequences mentioned

Definition 1
A golden section of the segment of length d is called a division into smaller sections
of lengths x and d− x, in which

d

x
= x

d− x
.

By solving the quadratic equation x2 + dx− d2 = 0 resulting from the above
equation we get x = d

√
5−1
2 and a golden proportion d

x , which is expressed in the
golden number

ϕ =
√

5 + 1
2 ≈ 1, 6180339887...

Definition 2
For a given rectangle with side lengths in the ratio 1 : x, we will call the golden
proportion of the only ratio 1 : ϕ at which the original rectangle can be divided into
a square and a new rectangle which has the same ratio of sides 1 : ϕ.

Definition 3
The golden rectangle is called a rectangle in which the ratio of the lenght of its
sides is 1 : ϕ.

Directly from this definition we get a quadratic equation

x2 − x− 1 = 0,

and thus for x > 1 we have x = ϕ.
Let ϕ̂ = −1

ϕ = 1−
√

5
2 ,then

x2 − x− 1 = (x− ϕ) (x− ϕ̂) = 0.

Therefore ϕ2 = ϕ+ 1 and ϕ̂2 = ϕ̂+ 1. Consequently,

ϕn = ϕn−1 + ϕn−2, ϕ̂n = ϕ̂n−1 + ϕ̂n−2, n ≥ 2. (1)

Definition 4
Fibonacci sequence is a sequence defined recursively as follows:

f1 = f2 = 1, fn+1 = fn−1 + fn, n ≥ 2

(sometimes formally accepted f0 = 0 and then the recursive formula is valid for
n ≥ 1).
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Definition 5
Fibonacci numbers are called consecutive terms of the sequence (fn).

Let us consider the following sequence:

0, 1, 1, 2, 3, 5, 8, 13, ...

By recurrence
f0 = 0, f1 = 1, fn = fn−1 + fn−2, n ≥ 2. (2)

We will now sketch the proof of the following formula:

fn = 1√
5

(ϕn − ϕ̂n) , n ≥ 0. (3)

For n = 0 we get f0 = 0. For n = 1 we get correctly f1 = 1√
5 (ϕ− ϕ̂) = 1. For

the higher powers we use (1) and by induction we confirm validity of (3).

Remark 1
We will show how to get the formula (3) and confirm its truth. Using the following
formula:

fk = a

(
1 +
√

5
2

)k

+ b

(
1−
√

5
2

)k

for k = 0 and k = 1 we have:

a+ b = 0, a
(

1 +
√

5
2

)
+ b

(
1−
√

5
2

)
= 1,

thus

a = 1√
5
, b = −1√

5
, fk = 1√

5

((
1 +
√

5
2

)k

−
(

1−
√

5
2

)k
)
.

Therefore we get fk = 1√
5

(
ϕk − ϕ̂k

)
.

We will now show that the obtained result is always true. For k = 0, 1 we have
f0 = 0, f1 = 1. Assuming that equality fm = 1√

5 (ϕm − ϕ̂m) is true for every
m ≤ k (m ≥ 0) we show that fk+1 = 1√

5

(
ϕk+1 − ϕ̂k+1). Based on formula (1) we

have
fk + fk−1 = 1√

5
(
ϕk − ϕ̂k

)
+ 1√

5
(
ϕk−1 − ϕ̂k−1) =

= 1√
5
((
ϕk + ϕk−1)− (ϕ̂k + ϕ̂k−1)) = 1√

5
(
ϕk+1 − ϕ̂k+1) = fk+1.

In this way we proved the truth of formula (3).

Remark 2
Since | 1−

√
5

2 | < 1, we see that limk→∞ ϕ̂k = 0 and fk is the nearest integer to
1√
5ϕ

k. From Lawrynowicz i inni, 2018 we have
√

5−1
2 =

√
1−

√
1−
√

1− . . .
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which is equivalent ϕ̂ = −
√

1−
√

1−
√

1− . . .. The equation ϕ̂2 = 1 + ϕ̂ pro-

duces a root
√

1−
√

1−
√

1− . . . = limn→∞An (by definition), where sequence
(An) is defined by A1 =

√
1− 1

ϕ , An+1 =
√

1−An (n > 1). Because the sequence
(An) is monotonic and bounded, so limn→∞An = A, moreover A2

n+1 = 1 − An.
Therefore we get A2 = 1 − A, and hence A =

√
5−1
2 . To demonstrate the equal-

ity
√

5−1
2 =

√
1−

√
1−
√

1− . . . (without proof in Lawrynowicz i inni, 2018),

we raise both sides of equality A =
√

1−
√

1−
√

1− . . . to square. We get A2 =
1−

√
1−
√

1− . . . = 1−A, so we have equality A2 +A− 1 = 0, hence A =
√

5−1
2 .

Also from ϕ2 = 1 +ϕ we can get ϕ =
√

1 +
√

1 +
√

1 + . . . in a similar way; here
A1 =

√
1, An+1 =

√
1 +An.

We have more:
ϕ̂+ ϕ̂2 + ϕ̂3 + . . . = −ϕ̂2,

−ϕ̂+ ϕ̂2 − ϕ̂3 + . . . = ϕ.

Definition 6
A sequence (Fn) of the form Fn+1 = Fn +Fn−1, n ≥ 2, where F1 and F2 are given
positive integers we call a Fibonacci type sequence.

For example, this sequence is the so-called Lucas sequence (ln):

1, 3, 4, 7, 11, 18, 29, . . .

These numbers can be described by a formula

l1 = 1, l2 = 3, ln+1 = ln + ln−1, n ≥ 2.

By using induction, we notice that

ln+1 = fn + fn+2 (4)

Now using the formula (4) we get

fn+1 = fn + ln
2 (5a)

and hence the generalization using recursive formulas for (fn) and (ln) in induction
relative to m

fn+m = 1
2(fmln + lmfn) (5b)

Using (4) we get from here

fn+m = fmfn+1 + fm−1fn. (5c)

Based on formula (5c) we get by putting m = n equality f2n = fnfn+1 +fn−1fn =
(fn+1 + fn−1)fn = lnfn. Finally we have

f2n = lnfn (n ≥ 1). (5d)
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Remark 3
Based on the formula (5c) assuming m = n + 1 you can get equality f2n+1 =
f2

n + f2
n+1 (n ≥ 1), while using (5d) we get f2n = fn(2fn−1 + fn) (n ≥ 1).

Let’s add that both obtained formulas are useful when finding a specific term in
a Fibonacci sequence using a calculator or a computer.

By creating a sequence of proportions (xn), where xn = fn+1
fn

, we get

xn = 1 + 1
xn−1

(6)

and consequently assuming that this sequence is convergent

g = lim
n→∞

xn = 1 + 1
limn→∞ xn−1

= 1 + 1
g
.

From identity fn+1 = ϕfn + ϕ̂n, which will be presented in Corollary 1, we have

lim
n→∞

xn = lim
n→∞

fn+1

fn
= lim

n→∞

(
ϕ+ ϕ̂n

fn

)
= ϕ

because limn→∞
ϕ̂n

fn
= 0, so this sequence is convergent. Moreover, g = ϕ.

An other proof of convergence of the sequence (xn) will be shown further in
the proof of Theorem 2(a).

The following Edelstein’s theorem will be useful

Theorem 1
(Goebel, 2005, Edelstein, 1962) Let X be a compact metric space and let f : X → X
be a contractive mapping, that is d(f(x), f(y)) < d(x, y) for all x 6= y in X. Then
f has a unique fixed point. Further, for any x ∈ X, the iterative sequence (fn(x))
converges to the fixed point.

Let C = 〈1, 2ϕ− 1〉. The map f specified on C by a formula f(x) = 1 + 1
x meets

the conditions:

1° f(C) ⊂ C, bacause f is decreasing and f(2ϕ− 1) = 1 + 1
2ϕ−1 = 2ϕ

2ϕ−1 > 1 and
f(1) = 2 < 2ϕ− 1;

2° for each x, x′ ∈ C|f(x) − f(x′)| =
∣∣ 1

x −
1
x′

∣∣ = |x−x′|
xx′ < |x − x′|, because x >

x′ > 1 either x′ > x > 1.

Therefore using Theorem 1 we can get the following

Lemma 1
Let C = 〈1, 2ϕ − 1〉. The mapping f : C → C, f(x) = 1 + 1

x , has a unique fixed
point u, and limn→∞ xn = u = ϕ.

Dowód. It is easy to see that the sequence (xn), xn = fn+1
fn

= 1+ 1
xn−1

(n > 1),
starting from x0 = f2

f1
∈ C can be described by the formula xn = fn(x0). Because

f : C → C is a concractive mapping (from the condition 2°), so by Edelstein’s
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theorem (Theorem 1) f has a unique fixed point u ∈ C. Because u = 1 + 1
u , so

u = ϕ. Further the iterative sequence (fn(x0)) converges to u. We finally have
limn→∞ xn = u = ϕ.

Remark 4
The result: x̂ = ϕ = limn→∞ xn can also be obtained by using the Darboux property
and knowing that f , f(x) = 1 + 1

x , is a continuous mapping of the interval C =<
1, 2ϕ− 1 > into itself.
Indeed, let g(x) = x− f(x). Then

g(1) = 1− f(1) = 1− 2 < 0,

g(2ϕ− 1) = 2ϕ− 1− f(2ϕ− 1) = 2ϕ− 1− 1− 1
2ϕ− 1 =

= 2ϕ− 2− 1
2ϕ− 1 > 2(ϕ− 1)− 1

2(ϕ− 1) > 0.

So there is a point x̂ ∈ C, that g(x̂) = 0. It means that x̂− 1
x̂ − 1 = 0, therefore

x̂ = ϕ,

because f is a decreasing map.
The rest of the proof is obvious because the iteration method for the equation g(x) =
0 is always convergent, independently of the choice of point xo ∈ C, and the half
dividing method immediately gives the root of this equation.

Consider the sequence (bn), where bn = 2fn+1; this is sequence:

2, 4, 6, 10, . . .

The corresponding sequence of proportions (pn) has a form

pn = bn+1

bn
= 2fn+2

2fn+1
= fn+2

fn+1
= xn+1. (7)

For Lucas sequence (ln) we have a sequence of proportions (qn) defined by
equality qn = ln+1

ln
. Because bn = fn + ln (from (5a)), so ln = bn − fn. Therefore

qn = bn+1 − fn+1

bn − fn
. (8)

Theorem 2
The following equality occurs:

(a) limn→∞ xn = ϕ,

(b) limn→∞ pn = ϕ,

(c) limn→∞ qn = ϕ.
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Dowód. (a) Other proof of this point (based on Corollary 1) has been pro-
vided earlier. We can also get it by showing the monotonicity and boundedness
of the subsequences (x2n) and (x2n+1) of the sequence (xn), which will cause
the convergence of the sequence (xn) to the limit equal to the limit of both
subsequences, and as a consequence we will get the limit of the sequence (xn)
equal to ϕ (see Foryś, 2014). Instead, we will use Lemma 1. Under this Lemma
we get limn→∞ xn = ϕ.

(b) results from (a).

(c) We already know that the sequence of quotients ln+1
ln

, i.e. the sequence (qn) is

specified by qn = bn+1−fn+1
bn−fn

=
bn+1−fn+1

fn
bn−fn

fn

.

We have the following equality in the case of the numerator bn+1−fn+1
fn

=
2fn+2−fn+1

fn
=

2fn+2
fn+1

fn
fn+1

− fn+1
fn

, so bn+1−fn+1
fn

→ 2ϕ2 − ϕ at n→∞.

In the case of the denominator we have bn−fn

fn
= bn

fn
− 1 = 2fn+1

fn
− 1→ 2ϕ− 1 at

n→∞.
Therefore limn→∞ qn = limn→∞

ln+1
ln

= 2ϕ2−ϕ
2ϕ−1 = ϕ.

Theorem 3
ln = ϕn + ϕ̂n, n ≥ 1, where ln is an n-th Lucas number given by ln = fn−1 + fn+1.

Dowód. (Version 1) Based on (5d) and (3) we get

ln = f2n

fn
= f2n

√
5

ϕn − ϕ̂n
= f2n

ϕn + ϕ̂n

ϕ2n − ϕ̂2n

√
5 = (ϕn + ϕ̂n)f2n

f2n
= ϕn + ϕ̂n.

(Version 2) We can prove this theorem using the following formula ln = αϕn+βϕ̂n

and based on the recursive definition of the sequence (ln): l0 = 2, l1 = 1, ln =
ln−1 + ln−2 for n > 1. We have a system of equations{

α+ β = 2
αϕ+ βϕ̂ = 1

.

Thus β = 2− α and

αϕ+ (2− α)ϕ̂ = α(ϕ− ϕ̂) + 2ϕ̂ = 1,

from this
α = 1− 2ϕ̂√

5
= 1, β = 1.

Therefore
ln = ϕn + ϕ̂n.

We will now show that obtained result is always true.
For n = 0, 1 we obviously have l0 = 2, l1 = ϕ+ ϕ̂ = 1.
Assuming that ln−1 = ϕn−1 + ϕ̂n−1, ln−2 = ϕn−2 + ϕ̂n−2 (n > 1) we get by (1)
ln−1 + ln−2 =

(
ϕn−1 + ϕn−2)+

(
ϕ̂n−1 + ϕ̂n−2) = ϕn + ϕ̂n = ln.
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Lemma 2

ϕn = ϕfn + fn−1, n ≥ 1.

Dowód. For n = 1, we get correctly ϕ = f1ϕ+ f0.
Assuming the equality ϕn−1 = ϕfn−1 + fn−2 (n ≥ 2) and multiplying both sides
of this equality by ϕ we get

ϕn = ϕ2fn−1 + ϕfn−2 = (ϕ+ 1)fn−1 + ϕfn−2 = ϕfn + fn−1.

Corollary 1

fn+1 = ϕfn + ϕ̂n, n ≥ 0.

Dowód. From Lemma 2 we have ϕfn = ϕn − fn−1 for n ≥ 1. Based on
Theorem 3 we have

ϕn − fn−1 = fn+1 − ϕ̂n,

so
ϕfn = fn+1 − ϕ̂n.

For n = 0 we get
f1 = 1 = ϕf0 + ϕ̂0.

Finally
fn+1 = ϕfn + ϕ̂n.

Remark 5
For three sequences (fn), (bn) and (ln), it can be shown that the quotients of
neighboring terms tend to number ϕ finding a unique fixed point of the function
f(x) = 1 + 1

x specified on the interval < 1, 2ϕ− 1 > and applying Lemma 1 to the
appropriate quotients. For example, for Lucas’ sequence we have

ln+1
ln

= ln+ln−1
ln

= 1 + ln−1
ln

, hence qn = 1 + 1
qn−1

.

We get qn = f(qn−1), where f(q) = 1 + 1
q .

Remark 6
For three sequences (fn), (bn) and (ln), which are Fibonacci type sequences, we can
show the convergence of quotients (xn), (pn) and (qn) using a compact form of n-th
terms of this type sequences.

For example for the sequence (bn) , bn = 2√
5 (ϕn+1 − ϕ̂n+1) (n ≥ 1), we have

bn+1
bn

=
2√
5

(ϕn+2−ϕ̂n+2)
2√
5

(ϕn+1−ϕ̂n+1) = ϕ−ϕ̂( ϕ̂
ϕ )n+1

1−( ϕ̂
ϕ )n+1 → ϕ (as n → ∞), bacause | ϕ̂ϕ | = 1

ϕ2 < 1.
Therefore limn→∞ pn = ϕ.
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Now we will present the relationship between the number ϕ and dependence
(6) using the concept of a continued fraction for the golden ratio ϕ. We know that
ϕ = 1 + 1

ϕ . Therefore in the continued fraction [a0; a1, . . . ] = a0 + 1
a1+ 1

a2+...

all the
quotients a0, a1, a2, . . . are equal to 1. Thus the number ϕ represents the continued
fraction [1; 1, 1, . . . ]. Based on the continued fraction corresponding to ϕ we can
also give the form of the continued fraction for 1

ϕ :

1
ϕ

= [0; 1, 1, . . . ].

Taking into account that moving one space does not change the structure of
this fraction, we get a recursive relationship

xn = 1 + 1
xn−1

with x0 = 1.

Therefore limn→∞ xn = ϕ.
Now we will present examples of Fibonacci type sequence in conjunction with

the golden number.
Let us consider the sequence (tn), where tn = fn−1 + fn+3; this is sequence

3, 6, 9, . . . It is easy to see that fn−2 + fn+2 = 3fn (n ≥ 2). Indeed fn−2 + fn+2 =
fn − fn−1 + fn+1 + fn = 3fn.

Now for rn = tn+1
tn

we have rn = 3fn+2
3fn+1

and limn→∞ rn = limn→∞
fn+2
fn+1

= ϕ.
The sequences (fn), (bn) and (tn) are special cases of the sequence (gn), where

gn = kfn+1 (k is a fixed positive integer).
For sn = gn+1

gn
we have sn = fn+2

fn+1
→ ϕ at n→∞.

Of course, (gn) is Fibonacci type sequence and limn→∞
gn+1

gn
= ϕ.

The above results can be generalized in the form of

Theorem 4

lim
n→∞

Xn = ϕ,

where
Xn = Fn+1

Fn
, n ≥ 1.

Dowód. Let’s assume that F1 = A and F2 = B, where A and B are positive
integers. Based on the definition on the Fibonacci type sequence we have: F3 =
A + B, F4 = A + 2B, F5 = 2A + 3B, . . . Given the definition on the Fibonacci
sequence we have from here:

F3 = Af1 +Bf2, F4 = Af2 +Bf3, F5 = Af3 +Bf4, . . .

Using the recursive formula Fn+1 = Fn + Fn−1 (n ≥ 2), F1 = A,F2 = B, is easy
to show that

Fn+1 = Afn−1 +Bfn.

Therefore

Xn = Afn−1 +Bfn

Afn−2 +Bfn−1
= A+Bxn−1

A
xn−2

+B
→ A+Bϕ

A
ϕ +B

(n→∞)
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by Theorem 2 (a). Because ϕ =
√

5+1
2 , so

A+Bϕ
A
ϕ +B

=
A+B

√
5+1
2

2A√
5+1 +B

= 2A+B
√

5 +B

2 ·
√

5 + 1
2A+B

√
5 +B

=
√

5 + 1
2 .

Finally
lim

n→∞
Xn = ϕ.

Remark 7
Convergence to the number ϕ of the iterative sequence (Xn) given by the formula
Xn = fn(X0), X0 = F3

F2
> 1, also we get based on a slightly modified Lemma

1, when instead of C we take K = 〈1,M〉,M > 2, and the mapping f is still
defined by the same formula as in Lemma 1, while f(K) ⊂ K (because f(M) > 1
and f(1) = 2 6 M). The proof of this version of the Lemma 1 is still based on
Edelstein’s theorem.

Remark 8
( LRE,n.d.) A generalized version of Fibonacci numbers has recurrence

Gn = Gn−1 +Gn−2

with G1 = a and G2 = b, where a, b > 0 has solution by Gn = 1
2 [(3a− b)fn + (b−

a)ln].

Of course, every Fibonacci type sequence is included in the generalized version of
Fibonacci numbers.

References

Barcz, E.: 2017, Current research in mathematical and computer sciences, w: A. Lecko
(red.), Local versions of Banach principle, their generalizations and applications,
41–53.

Edelstein, M.: 1962, On fixed and periodic points under contractive mappings, J. London
Math. Soc 37, 74–79.

Foryś, U.: 2014, Nie tylko złoty podział: czy fibonacci to przewidział, w:
A. Bartłomiejczyk (red.), Metody matematyczne w zastosowaniac, Projekt Centrum
Zastosowań Matematyki, Gdańsk.

Goebel, K.: 2005, Twierdzenia o punktach stałych, UMCS, Lublin.
Lawrynowicz, J. i inni: 2018, Fractals and chaos related to ising-onsager lattices. relations

to the onsager model, w: A. Lecko (red.), Current Research in Mathematical and
Computer Sciences II, Wydawnictwo UWM, Olsztyn, 131–140.

LRE.: n.d. http://mathworld.wolfram.com/LinearRecurrenceEquation.html.
Possamentier, A., Lehmann, I.: 2014, Niezwykłe liczby Fibonacciego, Prószyński i S-ka.
Vorobiev, N., Nicolai, N.: 2002, Fibonacci Numbers, Birkhäuser Basel.

http://mathworld.wolfram.com/LinearRecurrenceEquation.html


On the golden number and Fibonacci type sequences [35]

University of Warmia and Mazury
Faculty of Mathematics and Computer Science
Chair of Complex Analysis
Słoneczna 54 Street, 10-710 Olsztyn
Poland
e-mail: ebarcz@matman.uwm.edu.pl


	Introduction
	Examples of Fibonacci type sequences and the convergence of quotients of terms of the sequences mentioned

