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Abstract. An axiomatic approach to Non-standard Analysis by E. Nelson
is presented in a simplified form. The main aim of the article is strictly the
popularization of NSA, and not its foundations. No special preparation in
mathematical logic is required from the reader but it is assumed that he
(she) is familiar with elementary calculus and linear algebra.

Introduction

Non-standard Analysis is an enlargement of Standard or Ordinary Mathemat-
ics. It provides a strictly logical foundation of Leibniz’s infinitesimals. It enables us
to better understand and simplify a lot of Standard Mathematics. It also advances
new mathematical problems.

In Non-standard Analysis (NSA in short), the old problem of the substan-
tiation of differential and integral calculus with the application of infinitesimals
was solved. This problem seemed to be unsolvable in the times of G. Leibniz and
L. Euler. NSA has changed the face of the whole of Mathematics: it is a new
mathematical outlook. It is necessary to emphasise that NSA does not object or
contradict the Ordinary Mathematics (OM in short). NSA extends and supple-
ments OM. This means that all objects which exist in OM also exist in NSA, and
all statements which are true in OM remain true in NSA. NSA often simplifies
OM and makes it more transparent. NSA states new mathematical theorems and
problems.

NSA was created mainly by A. Robinson (1960), who developed H. Hahn’s,
T. Skolem’s, A. Malcev’s, E. Hewitt’s, and J. Łoś’s ideas. Afterwards, W.A.J.
Luxemburg proposed an ultrafilter approach. In this article, we present an ax-
iomatic approach to NSA, due to E. Nelson (Nelson, 1977), which is less difficult
to learn and apply. Our exposition, contrary to that of Nelson, is not always
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strictly logical. Our aim is strictly the popularization of NSA, and not its founda-
tions. Other axiomatic approaches were presented in the seventies by K. Hrbac̆ek
(Hrbac̆ek, 1979, 1987) and T. Kawai (Kawai, 1981). In our opinion, Nelson’s
approach is the best for many applications.

Interested readers may find a continuation of this presentation in the same
spirit in (Lyantse, Kudryk, 1997). There we provided a more complete picture
of NSA. Good supplements to the book are (Albeverio, Fenstad, Høegh-Krohn,
Lindstrøm, 1986, Cutland, 1983, Cutland, 1988, Davis, 1977, Diener, 1983, Diener,
Reeb, 1989, Goldblatt, 1998, Lutz, Goze, 1981). In the references, we also listed
other books which influenced our thinking. Futhermore, we would recommend
looking at more recent publications such as (Hrbac̆ek, Lessman, O’Donovan, 2015)
and (Kanovei, Reeken, 2004). The latter is the most comprehensive source on
various modern non-standard axiomatic theories, including IST.

Some exercises are left to the reader (through courtesy of the author).

1. Sets

Let us begin with a remark that all what is determined and investigated in
Mathematics can be considered as a set. (We are not going to pursue a class path
here.) For instance, the number zero may be identified with the empty set ∅, 1 can
be defined as the one–element set {0}. Whenever a natural number n is defined as
a set, we can consider n+ 1 as n∪ {n} = {0, 1, . . . , n}. We consider each function
and relation as a set by identifying them with their graphs, and so on.

2. Standard, internal, and external sets

The base of OM (= ordinary mathematics = standard mathematics) is ZFC
( = Zermelo–Fraenkel Set Theory with the Axiom of Choice); see e.g. (Luxemburg,
Robinson, 1972) or (Robert, 1988).

Sets which are uniquely determined in ZFC are said to be standard.
Thus 0, 1, 2, . . ., 1099, . . . , 1/2,

√
2, π, . . ., +, <, . . ., sin, . . ., N,R, C, . . ., C[0, 1],

. . ., L2(R), . . . are all standard.
In NSA, elements of standard sets are said to be internal.
Thus, in NSA, if A ∈ B and B is standard, then A can be nonstandard, but it

must be internal. This means that for such A (for arbitrary internal A) all laws
of OM hold. But due to NSA’s methods of the construction of subsets (parts) of
a standard set, some statements of OM are not true for these subsets.

If A ⊆ B and B is standard, then A is said to be external.
If there is a statement which is true for all standard sets but not true for A,

then A is said to be strictly external. See below for examples.

Remark 1
If an A is an element of a set B which is standard, internal, or external, then
it must be internal. The cause is that each external set is a part of a standard
one, and elements of standard sets are internal (which is sometimes repeated for
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pedagogical reasons). Furthermore, in order for IST to be a closed theory, we
ought to assume that the elements of internal sets are internal.

Denote by S, I, V universes (i.e. totalities) of standard, internal, and external
sets respectively. We have

S ⊂ I ⊂ V.

These universes are not sets, but proper classes. We shall see later that S \ I
and V \ I are not empty.

Remark 2
In this article, we accept the following agreement: ”A set” always means ”an
internal set”. If X is a set, then 2X is the (internal) set of all internal parts of
X. If X, Y are sets, then Y X denotes the (internal) set of all functions f with
dom f = X and ran f ⊂ Y . Exceptional cases are possible in which it is clear from
context that a set under consideration is standard or external.

3. Might of the Word; the word “standard”

The Bible asserts that the Word has the ability to create (see John 1, 1-4).
Mathematics permanently demonstrates this capacity of words. For instance, take
the preposition “between.” Let a be a straight line, and A, B its different points.
Due to the word “between” we can create the segment AB := {X ∈ a: X is
between A and B}. Next, we can define the straight ray rAB := {X ∈ a: A is not
between X and B} and convert rAB into an ordered set by (∀ X, Y ∈ rAB) (X <
Y ⇐⇒ X is between A and Y }, and so on.

We can also notice that the same word plays a fundamental role in J. Conway’s
theory of surreal numbers (see Conway, 1976). Unfortunately,the absolute arith-
metical continuum created by Conway is unfitting for the needs of the analysis for
the time being.

Exercise 1
Let a be a straight line of the plane Σ. Define with the help of “between” two
halfplanes Σ1

a and Σ2
a, bounded by a. Hint: Use the concept of a segment which

is descended from “between”.

Without exaggerration, one can say that the entire OM is created by two
words: “a set” and “to belong”. If we wish to extend the OM, we ought to invent
a new word. To this end, Robinson has invented the adjective “standard,” which
came into general use. It is very important to keep in mind that OM does not
know what is “standard.” Therefore, the laws of OM do not control the property
“to be standard” and the properties which are derived from it.

Let us consider some simple applications of the notion ”standard”.

4. Classification of reals

It is convenient and comfortable to agree the following. The formula “st(x)”
denotes “x ∈ S”, i.e. “x is standard”; “∀stx p(x)” denotes “(∀x) (st(x) ⇒ p(x)”,
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i.e. “for any standard x p(x)”; “∃stx p(x)” denotes “(∃x) (st(x) ∧ p(x))”, i.e. “for
a standard x p(x)”.

Let x ∈ R, then “x ≈ 0” denotes “(∀stn ∈ N) (|x| < 1/n)”, i.e. “x is infinites-
imal”. For x, y ∈ R “x ≈ y” means “x − y ≈ 0”, i.e. “x is near y”. We write
“x ≈ ∞” for “(∀stn ∈ N) (|x| > n)”, and “x ≈ +∞” or “x ≈ −∞” if, respectively,
“x ≈ ∞ ∧ x > 0,” or “x ≈ ∞ ∧ x < 0.” If x ≈ ∞, we say that x is infinitely
large. At last, notation “x� 0” and “|x| � ∞” are equivalent to “x > 0∧x 6≈ 0”
and “x 6≈ ∞” respectively. If |x| � ∞, we say that x is a limited number, and if
0� |x| � ∞, x is an appreciable number.

Remark 3
It can be shown that the continuity of a standard function f at a standard point
a is strictly equivalent to the implication “x ≈ a =⇒ f(x) ≈ f(a)”. This is an
example which demonstrates how to use our new concepts.

5. Existence of infinitesimals; the special idealization principle (I0)

To ensure the existence of infinitesimals, we accept the following axiom:
(I0) A standard set is infinite if (and only if) it contains a non-standard ele-

ment.
”Non-standard” means ”is not standard”. We write ”¬st(x)” for “x 6∈ S”. It

can be shown that (I0) is a special case of the general principle of idealization (I).

Corollary 1
There exist non-standard natural, rational, real numbers.

Indeed, the sets N, Q, R are standard and infinite. The reader can point out
many other examples, for instance: there exist non-standard vectors, transforma-
tions, groups, spaces, and so on.

It is useful to formulate (I0) in a more exact way. As it is known, a set E
is said to be finite if there exist a number n ∈ N and a bijective (that is one-
to-one) transformation f which sends E onto {1, 2, . . . , n}. In this case, we write
n = cardE, and n is said to be the cardinality or the quantity of elements of E. We
also write “finE” for “E is finite.” The number n = cardE (which is independent
of the choice of f) can be non-standard, but if we write cardE = n, we assume
that the function f , which is a bijection E → {1, 2, . . . , n}, is internal: f ∈ I (i.e.
its graph is an internal set). We introduce the unary predicate “fin” as follows:

“fin (x)” ≡ “x is finite.”

The special principle of idealization is as follows:

(∀x ∈ S) (¬fin(x) ⇐⇒ (∃ y ∈ x)¬st(y)), (I0)

where ¬a means the negation of a.
Apply to (I0) the following laws of Logic: ¬¬a ≡ a, a⇔ b ≡ ¬a⇔ ¬b,

¬(∃x) p(x) ≡ (∀x)¬p(x). We get

(∀x ∈ S) (fin(x) ⇐⇒ (∀ y ∈ x) st(y)). (I1)
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This is the second form of the special principle of idealization: a standard set is
finite if and only if all its elements are standard.

Proposition 1
A natural number is infinite if and only of it is non-standard.

Proof. Let n ∈ N be standard. Then Nn := {1, . . . , n} is a well-defined set of
OM. Therefore, it is standard. Since Nn is finite, namely cardNn = n ∈ N, each
of its elements is standard (see (I1)). But (∀ p ∈ N) (p ≤ n ⇐⇒ p ∈ Nn). Since

(∀n, p ∈ N) (st(n) ∧ p < n =⇒ st(p)),

we have
(∀ p ∈ N) (¬st(p) ⇐⇒ (∀stn ∈ N) (p > n)),

and we see that
(∀ p ∈ N) (¬st(p) ⇐⇒ p ≈ ∞).

Remark 4
For x ∈ R, the formula |x| � ∞ does not imply that x is standard. For example,
the segment [0, 1] is standard and infinite, therefore (see (I0)) it contains some
non-standard numbers.

Exercise 2
Prove that any n ∈ Z is limited if and only if it is standard.

Proposition 2
There exist infinitesimal real numbers different from 0.

Proof. Let ω ∈ N and ω be non-standard. Then (see (I0)) ω ≈ ∞, , i.e.
(∀stn ∈ N) (ω > n). Therefore (∀stn ∈ N) (1/ω < 1/n), i.e. 1/ω ≈ 0. I

6. The first examples of strictly external sets

In OM, we often use the following subset construction. Let A be a set, and
p(·) a property (predicate). Then B := {x ∈ A : p(x)} is the set of all x from
A which have the property p(·). In NSA, we also apply this construction. For
instance, we set

stA := {x ∈ A : st(x)}.

Thus stA denotes the totality of the standard elements ofA. According to section 2,
if A is standard or internal, stA is external as a part of A.

Recall that an external set is said to be strictly external if it is non-internal.
In other words, it is not subordinate to the laws of OM.

Proposition 3
The set N \ stN := {n ∈ N : ¬st(n)} is strictly external.
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Proof. In OM, the least number principle is known: each non–empty set of
natural numbers contains the least number. We have N \ stN 6= ∅. Set n :=
min(N \ stN) and suppose that n ≈ ∞. Then n − 1 is also unlimited, therefore,
n− 1 ∈ N \ stN, contrary to the definition of n. But the inequality n�∞ is also
impossible because n�∞ =⇒ st(n), contrary to n ∈ N \ stN. I

Exercise 3
Prove that stN is strictly external. Hint: stN is bounded by each ω ≈ ∞, but
max(stN) does not exist.

Remark 5
With the help of the word “standard,” we have constructed not only a new kind
of numbers but also a new kind of sets, namely strictly external ones. This once
more presents the power of words which are happily selected.

Warning 1
Nelson’s IST knows only internal sets: in IST “a set” means “an internal set.”
Thus, the Internal Set Theory does not know what an external set is. For instance,
in IST there is no stN, stQ, stR, and so on. What is the ground for manipulation
with such (and other) external sets? The matter is that IST knows external
formulas. In IST, we don’t understand what stN is, but we understand what
x ∈ stN means. x ∈ stN is just an abbreviation for x ∈ N ∧ st(x). Another
example: let A, B be standard sets, and p(x), q(x) be external formulae. External
sets Ap := {x ∈ A : p(x)} and Bq := {x ∈ B : q(x)} are outside of IST. Therefore,
Ap ∪ Bq cannot be formed in IST. But the formula x ∈ Ap ∪ Bq makes sense. It
is an abbreviation of (x ∈ A ∧ p(x)) ∨ (x ∈ B ∧ q(x)).

Exercise 4
What about Ap ∩Bq, Ap \Bq, Ap ×Bq, B

Ap
q ? Let A be external. What is {A}?

Exercise 5
For any n ∈ N, denote by f(n) the first k ∈ N, such that the interval ]k−1

n , kn ]
contains a standard real number. Why is this definition of the function f not
correct in the framework of IST?

7. Formulae

Mathematical formulae express mathematical statements. For instance, for-
mulae “5 + 3 = 8”, “2 < 1” are sentences (of Arithmetics), the former is true,
the latter is false. The formulae “x + 3 = 8”, “x < 1” are not sentences, for they
are not false or true. But they become sentences if we replace x by a fixed real
number. Formulae such as “x+ 3 = 8”, “x < 1” are predicates, they express some
property (for example “x < 1” is the property of real numbers “to be less than 1”).
The variable x, which occurs in a formula p(x) in which after it is replaced by an
(admissible) constant, it results a sentence (true or false), is said to be free. Thus,
x is a free variable in “x+ 3 = 5”. If a formula is denoted by p(x, y), it means that
there are two free variables. To get a sentence, we ought to replace both x and y
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by (admissible) constants. Evidently, the quantity of free variables can be larger.
For instance, in the equation 3x − 2y + 5z = 1 (of a plane in the space R3) we
have three free variables.

From the formula p(x), one can obtain a sentence (true or false) not only by
replacing x by a constant, but also by bounding it by the quantifier ∀ ≡ “for all”,
or ∃ ≡ “for some”. Thus, (∀x ∈ R)(x+ 3 = 8) and (∃x ∈ R)(x+ 3 = 8) contain x
as a bounded (apparent) variable. They are sentences: the first is false, the second
is true.

In NSA, we deal with internal and external formulae. The basic external for-
mula is st(x) (read “x is standard” for st(x)). Each formula, in which “st(x)” oc-
curs explicitly or implicitly, is also said to be external. Internal formulae are those
in which “st(x)” does not occur in any way (explicitly or implicitly). Obviously,
we only mean formulae which are well–constructed by the laws of Mathematics
and Logic.

Let us consider some examples. The formulae x ≈ 0, |x| � ∞, x � 0 are
all external. For instance, |x| � ∞ is an abbreviation for (x ∈ R) ∧ (∃n ∈
N)st(n)∧ (|x| < n) which contains “st(x).” At the same time, the formulae x = 0,
x > 0, |x| < 1 are internal. Let a, b be straight lines. Then, a ‖ b, a ⊥ b are
internal sentences. If values of variables x, y are straight lines, then x ⊥ a, x ‖ a,
x ⊥ y, x ‖ y are internal formulae.

A formula can contain variables and constants. For instance, the formula
a < x < y < b contains two variables x, y, and two constants a, b; traditionally,
variables are denoted by x, y, z, . . . , u, v, w, . . . and constants by a, b, c, . . . , k, l, . . .;
m,n, p, . . . are reserved for variables which range over the set N of natural numbers.

We accept the following definition: An internal formula containing only
standard constants is said to be a standard formula. For instance, the formula
0 < x < ε is internal. It is standard if ε denotes a standard number, but if ε
denotes e.g. an infinitesimal number, it is non standard.

8. The transfer principle

According to Nelson’s approach to NSA (the main work of Nelson on this
subject is IST = Internal Set Theory = Idealization + Standardization + Transfer;
(see Lyantse, Kudryk, 1997) we need to add only three new axioms to OM (based
on ZFC). One of them is the transfer principle (T). We express it by using the
following statement:

(∃x) p(x) =⇒ ∃stx p(x); (T)
here p(x) denotes an arbitrary standard formula. Therefore, p(x) in (T) does not
involve st(x) as a subformula, and all constants in p(x) are standard. The domain
of action of the quantifier ∃ in (T) is the universe I of internal sets. Thus, the
principle (T) can be rewritten in the following form:

(∃x ∈ I)p(x) =⇒ (∃x ∈ S)p(x).

Since S ⊂ I, we can replace “ =⇒ ” with “⇐⇒ ”. Therefore, (T) is, in essence,
the statement

(∃x ∈ I) p(x) ⇐⇒ (∃x ∈ S) p(x). (T)
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Let us explain the content of (T) in other words. Let p(x) be a well–defined
standard formula with a free variable x which ranges over I. Let domtp be a part
of I, such that p(x) is true for x ∈ domtp. (T) says that if domtp is not empty
then domtp ∩ S is not empty as well.

8.1. The characterization of standardness

Now we can repeat in a more rigorous way what we have said in Section 2.
Remember that one reads “∃!x” as “there is a unique x.” “∃!stx” means “there
is a unique standard x.” Let us formulate the principle (Ch) (characterization of
standardness):

(∃!x ∈ I) p(x) ∧ p(x0) =⇒ st(x0). (Ch)

Indeed, if there exists a unique (internal) x for which the standard formula
p(x) is true, then, by (T), it must be standard.

Let us consider some examples.

Example 1
The empty set ∅ is standard.

The formula p(x) ≡ (∀y)(y 6∈ x) is standard (it contains no constant). The
statement p(∅) is true: (∀y)(y 6∈ ∅). This defines ∅ uniquely. To prove it, let us
recall the extensionality principle of OM:

(A = B) ⇐⇒ (∀x)(x ∈ A ⇐⇒ x ∈ B).

Now, if both ∅1 and ∅2 are empty, then for any x both x ∈ ∅1 and x ∈ ∅2 are false.
Therefore, the formula x ∈ ∅1 ⇐⇒ x ∈ ∅2 is true.

Example 2
If A is standard, then so is B := {A}.

Really, consider the formula p(x) = (∀y)(y ∈ x ⇔ y = A). This formula is
standard, because A is standard, and B is a unique set, for which p(x) is true.

In the same way we can show that

Example 3
If A,B,C, . . . are standard, then so are {A}, {A,B}, {A,B,C} . . ..

Example 4
If A,B are standard, then the ordered pair (A,B) is standard.

Indeed, according to Kuratowski, (A,B) = {{A}, {A,B}}.

Example 5
If A,B are standard, then A ∪B, A ∩B, A \B, A×B are standard.

For instance, A×B is a unique set, for which p(A×B) is true, where p(x) is
the following standard formula, (∀y)(y ∈ x) ⇐⇒ (∃a ∈ A)(∃b ∈ B)(y = (a, b)).
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Example 6
The numbers 0, 1, 2, 3, . . . are standard.

This follows from Example 1 to Example 4, because 0 := ∅, 1 := {0}, 2 :=
{0, 1}, 3 := {0, 1, 2} . . .

Example 7
The set N of natural numbers is standard.

Indeed, N is a unique x which satisfies the standard formula p(x)∧q(x)∧r(x),
where p(x) ≡ (1 ∈ x), q(x) ≡ (∀y)(y ∈ x =⇒ y ∪ {y} ∈ x), r(x) ≡ (∀z)(p(z) ∧
q(z) =⇒ x ⊆ z).

Remark 6
Instead of y ∪ {y}, one usually writes y + 1; r(x) means that x is a minimal set
which satisfies p(x) and q(x).

Exercise 6
Prove that the set Z of all whole numbers is standard.

Example 8
Let A be a standard set, and p(x) a standard formula. Then B := {x ∈ A : p(x)}
is standard.

B is uniquely determined by the standard formula p(x) ≡ (∀y) (y ∈ x ⇐⇒
y ∈ A ∧ p(y)).

Example 9
The set Q of all rational numbers is standard.

Really, any rational number can be uniquely represented as y/x, where x ∈ N,
y ∈ Z, and x, y have no common divisors. Thus, Q is a part of N × Z defined by
a standard condition.

Example 10
If A, B are standard, then the set BA of all functions f such that dom f = A,
im f ⊆ B, is standard.

Indeed, BA is a part of the standard set A×B which consists of all f satisfying
the standard formula f ⊆ A×B ∧ ∀x ∈ A ∃! y ∈ B (x, y) ∈ f .

Exercise 7
1◦ Prove that the set R of all real numbers is standard. Hint: represent R as
{r ∈ QN : p(r)}, where p(r) is a suitable standard formula.

2◦ Let A be a standard bounded set of real numbers. Prove that inf A and
supA are standard.
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3◦ Let f ∈ RR be a standard function. Suppose that the equation f(x) = 0
has only a finite number of roots. Prove that each such root is standard.
Hint: apply (I1) to {x ∈ R : f(x) = 0}. Does the equation sin x = 0 have
non-standard roots?

4◦ If E is a standard finite set, then cardE is a standard natural number. Why?

5◦ Let A,B be standard sets, and A ∩ B 6= ∅. Prove that A and B have a
common standard element. Prove that the common point of two standard
straight lines is standard.

6◦ Consider the Cauchy problem y′ = f(x, y), y|x=x0 = y0. Provide a condition
for its solution to be standard.

Proposition 4
1◦ A standard function takes a standard value at any standard point.

2◦ The inverse image of a standard set under a standard transformation is
standard.

Proof is left as an exercise for the reader.

9. The second form of the transfer principle

Apply to the principle (T) the following law of logic (a⇔ b) ⇐⇒ (¬a⇔ ¬b).
Note that if the formula p(x) is standard, then so is ¬p(x). This way, we get

∀stx p(x) ⇐⇒ ∀x p(x), (T’)

where p(x) is an arbitrary standard formula. This (T ′) is the second form of the
transfer principle. More strictly, (T ′) is as follows:

(∀x ∈ S) p(x) ⇐⇒ (∀x ∈ I) p(x). (T’)

Thus, if each standard x has a standard property p, then each internal x has
this property. In other words, as long as we consider standard properties only, we
cannot differentiate standard objects from non-standard (internal) ones. Standard
properties are their common properties.

Now let us consider some applications.

9.1. Non-standard extensionality principle

It states that a standard set A is uniquely determined by the totality stA of its
standard elements. Namely,

(∀A,B ∈ S) (A = B ⇐⇒ stA = stB).

(We recall that stA is the external set {x ∈ A : st(x)}).
Proof. By the extensionality principle of OM, A = B if (and only if) ∀x p(x),

where p(x) ≡ (x ∈ A) ⇐⇒ (x ∈ B). If A and B are standard, this p(x) is
standard. (T ′) tells us that ∀stx p(x) is sufficient for A = B, i.e. stA = stB is
sufficient for A = B. I
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Exercise 8
1◦ Prove that if A,B are standard, then A ⊂ B, whenever stA ⊂ stB.

2◦ Give a counterexample for (stA = stB) =⇒ (A = B) with non-standard
A,B.

9.2. The uniqueness of standard functions

Let X,Y be standard sets and f ∈ Y X be a standard function. Such f
is uniquely determined by its values at standard points. To be more exact, if
f1, f2 ∈ st(Y X), then

(∀stx ∈ X) (f1(x) = f2(x)) =⇒ (∀x ∈ X) (f1(x) = f2(x)). (1)

Proof. If f1, f2 are standard, then f1(x) = f2(x) is a standard formula, and,
by (T ′), we have (1). I

Corollary 2
A standard sequence u ∈ RN can be defined in no way as follows

un =
{
f(n) for n�∞,
g(n) for n ≈ ∞,

where f, g are different standard functions.

Remark 7
The transfer principles may be extended to formulae with an arbitrary quantity of
free variables. To indicate explicitly the standardness of these formulae, we write

∀stt1 · · · ∀sttr∃x1 · · · ∃xn p(x1, . . . , xn, t1, . . . , tr) =⇒
=⇒ ∀stt1 · · · ∀sttr∃stx1 · · · ∃stxn p(x1, . . . , xn, t1, . . . , tr),

(T)

∀stt1 · · · ∀sttr∀stx1 · · · ∀stxn p(x1, . . . , xn, t1, . . . , tr) =⇒
=⇒ ∀stt1 · · · ∀sttr∀x1 · · · ∀xn p(x1, . . . , xn, t1, . . . , tr),

(T’)

where p(x1, . . . , xn, t1, . . . , tr) is an arbitrary internal formula which contains no
constants, with free variables x1, . . . , xn, t1, . . . tr.

9.3. The uniqueness of a standard relation

Let X,Y be standard sets, and R1, R2 be standard relations between elements
of X and Y . (This means that Ri ⊆ X ×Y , i = 1, 2; as usually we write xRiy for
(x, y) ∈ Ri).) Then

(∀st(x, y) ∈ X × Y )(xR1y ⇐⇒ xR2y)
⇐⇒ (∀(x, y) ∈ X × Y )(xR1y ⇐⇒ xR2y).

Proof is left as an exercise for the reader.



[70] Taras Kudryk

Example 11
Define R ⊂ R2 by xRy ≡ x = y for standard x, y and xRy ≡ x ≤ y for non-
standard x, y. Then, R is not standard.

Example 12
We have ex > 0, cos(x+ y) = cosx cos y− sin x sin y for all x, y ∈ R, because these
formulae are standard and true for x, y ∈ stR.

10. The special standardization principle (S0)

The principle (I0) informs us that we cannot create any standard infinite set
without non-standard elements. The standardization principle tells us that some-
times it is possible to obtain something standard from something nonstandard. It
is the third axiom of Nelson’s IST. Now we formulate only some of its corollaries,
namely the special standardization principle (S0). It is as follows:

Let x be a limited real number. There exists a unique standard real number
y such that x ≈ y. Thus,

(∀x ∈ R)(‖x‖ � ∞ =⇒ (∃!sty ∈ R)(x ≈ y)). (S0)

The number y in (S0) is denoted by ◦x and said to be the shadow (or the standard
part) of x. So the shadow of x ∈ R, |x| � ∞, is defined uniquely by

◦x ∈ stR and ◦x ≈ x.

The uniqueness of the shadow immediately implies the following proposition.

Proposition 5
1◦ If x ∈ R is standard, then ◦x = x.

2◦ The unique standard infinitesimal is zero:

x ∈ stR =⇒ ◦x = x; x ∈ stR ∧ x ≈ 0 =⇒ x = 0.

3◦ If x, y ∈ stR, and x ≈ y, then x = y.

Let us define

F := {x ∈ R : |x| � ∞}, I := {x ∈ R : x ≈ 0}.

Note that the set F of all limited real numbers and the set I of all real infinitesimals
are strictly external. Indeed, F and I are non empty, F is bounded by every positive
unlimited ω ∈ R, I is bounded, e.g., by 10−10, but supF, sup I, inf F, inf I do not
exist.

The immediate corollary from (S0) is as follows:

∀x ∈ F x = ◦x+ ix, ◦x ∈ stR, ix ∈ I. (2)

The uniqueness of the shadow implies that this decomposition is unique. In other
words, F is a direct sum:

F = stR
·
+ I.
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11. R, stR, F, and I.

In OM, the set R of all real numbers together with the arithmetic operations
+ and · and with the order relation ≤ is defined as a complete linearly ordered
field. It is archimedean, i.e.

(∀x ∈ R)(x 6= 0 =⇒ (∃n ∈ N)(n|x| > 1)). (3)

If x in (3) is infinitesimal, then the corresponding n must be infinite. But from
(I0) we can conclude that

(∀stx ∈ R)(x 6= 0 =⇒ (∃stn ∈ N)(n|x| > 1)).

An analogous remark also concerns other statements about R. For instance,
consider the Borel–Lebesgue lemma. Let U = {Uα} be an open cover of some
bounded closed set E ⊂ R. The lemma states that there exists a finite subcover
U ′ = {Uα1 , . . . ,Uαn

}. This is true even if the exact bounds of E are infinite, and
the length of a Uα is ≈ 0. Obviously, in this case we have n ≈ ∞. But if E and U
are standard, then (I0) implies that U ′ can be chosen as standard.

The set stR := {x ∈ R : st(x)} is a subfield of the field R. For instance, we
have x ∈ stR∧x 6= 0 =⇒ x−1 ∈ stR, as a standard function (here x 7→ x−1) takes
standard values at standard points. stR is strictly external for the same reasons
as F.

Theorem 1
1◦ The (strictly external) set F is a linearly ordered ring, a subring of R. This

means that
F ⊂ R, (∀x, y ∈ F) (x+ y ∈ F ∧ xy ∈ F)
(∀x ∈ R) (∀y ∈ F) (|x| ≤ y =⇒ x ∈ F).

2◦ The (strictly external) set I is an ideal of the linearly ordered ring F. This
means that

I ⊂ F, (∀x, y ∈ I) (x+ y ∈ I), (∀x ∈ I) (∀y ∈ F) (xy ∈ I),
(∀x ∈ F)(∀y ∈ I)(|x| ≤ y =⇒ x ∈ I).

3◦ The map x 7→◦ x is a (strictly external) homomorphism of the ring F onto
the field stR. This means that

(∀x, y ∈ F)(◦(x+ y) = ◦x+ ◦y, ◦(xy) = ◦x · ◦y),
(x ≤ y =⇒ ◦x ≤ ◦y), (∀x ∈ F)(∃!ξ ∈ stR)(ξ =◦ x).

Proof is left as an exercise for the reader. For instance, let x ∈ F, y ∈ I. Then
|xy| < mn−1 for some m ∈ stN and all n ∈ stN. If we take n = km, then we
obtain |xy| < k−1 with an arbitrary k ∈ stN, i.e. xy ∈ I. Next, let x, y ∈ F.
According to (2), we have xy = ◦x◦y+α, where α := ix◦y+◦xiy+ ixiy ≈ 0, hence
◦(xy) = ◦x◦y. Suppose that x, y ∈ F, x < y, but ◦x > ◦y. Since ◦x+ ix < ◦y+ iy,
we have ◦x − ◦y < iy − ix. This is a contradiction, because ◦x − ◦y is a positive
standard, and iy − ix ≈ 0. And so on.
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Remark 8
The map x 7→ ◦x is idempotent, i.e. ∀x ∈ F ◦(◦x) = ◦x. Its kernel {x ∈ F : ◦x =
0} is the ideal I of infinitesimal numbers. We can say that x 7→ ◦x is a projection
of F onto stR parallelly to I. Clearly, x 7→ ix is a projection of F onto I, parallelly
to (its kernel) stR = {x ∈ F : ix = 0}.

At the very end, some “exotic” examples. A finite set E is said to be hyperfinite
if cardE ≈ ∞.

Example 13
An external “finite” set which contains the “infinite” set stR.

Take an ω ∈ N \ stN and form a sequence of segments ∆k := [k/ω, (k + 1)/ω[,
where k = −ω2, −ω2 + 1, . . ., ω2 − 2, ω2 − 1. Note that

ω2−1⋃
k=−ω2

∆k = [−ω, ω[ ⊃ stR.

None of ∆k contains more than one standard point. Indeed, the length of ∆k is
1/ω ≈ 0, therefore if x1, x2 ∈ ∆k, then x1 ≈ x2 and x1 = x2 whenever both x1
and x2 are standard. It is evident that only some ∆k contain a standard point
and never more than one. Denote by E′ the set of centers of such ∆k which do
not contain a standard point, and put E = E′ ∪ stR. We see that E is a totality
of 2ω2 ∈ N points. It contains stR, but, unfortunately, it is defined externally.

The existence of an internal E such that stR ⊂ E and cardE ∈ N can be
shown. Obviously, cardE ≈ ∞ for such E.

12. On decimal fractions

By the transfer principle (T ′), each x ∈ R (standard or not) can be represented
as

x = x0, x1x2x3 . . . , (4)

where x0 ∈ Z, ∀n ∈ N xn ∈ {0, 1, . . . , 9}. Recall that (4) means that

∀n ∈ N x0 + x1

10 + · · ·+ xn
10n ≤ x ≤ x0 + x1

10 + · · ·+ xn
10n + 1

10n . (5)

By Cantor’s principle of nested segments, (5) determines x uniquely. For this,
it is necessary for the sequence (xn)n∈N in (4) to be internal: if (xn)n∈N is
strictly external, then formula (4) represents no number. For instance, the fraction
0, 000 . . . . . . 999 . . . (0s are at finite positions, 9s are at infinite ones) is not a real
number. Obviously, x in (4) is standard if the sequence (xn)n∈N is standard.

Proposition 6
The number x ∈ R is a positive infinitesimal if and only if its decimal expansion
has the form

x = 0, 0 . . . 0xω+1xω+2 . . . , (6)

where xω+1 6= 0 and ω ≈ ∞.
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Proof. From (5) and (6) we conclude that

xω+1

10ω+1 ≤ x ≤
xω+1 + 1

10ω+1 ,

where 0 < xω+1 ≤ 9. Therefore, if ω �∞, then x > 10−ω−1 � 0, and if ω ≈ ∞,
then x < 10−ω−1 ≈ 0. I

Corollary 3
Let x ∈ R be positive. According to (2), we have x = y + z, where y = ◦x is the
standard part (shadow) of x, and z = ix is its infinitesimal part. Let y0, y1y2 . . .
be the decimal expansion of y. Then, for an infinite natural ω we have

x0 = y0, x1 = y1, . . . , xω = yω. (7)

Indeed, since z ≈ 0, we have z = 0, 0 . . . zω+1zω+2 . . . for some ω ≈ +∞. But
y = x − z and the substraction here can only change one decimal in x before
xω+1. I

Remark 9
Let x = x0, x1x2 . . . In order to find the shadow ◦x, we only have to know xn for
n ∈ stN. Indeed, from (7) it follows that

∀n ∈ stN (◦x)n = ◦xn.

On the other hand, a standard sequence (an)n∈N is uniquely determined by an,
n ∈ stN (see Subsection 9.2, Corollary 2).

13. Some permanence principles. Robinson’s lemma

An (internal) set Ñ ⊆ N is said to be modest if

∃m�∞ Ñ ⊂ {1, 2, . . . ,m},

and it is said to be greedy if

∃ω ≈ ∞ {1, 2, . . . , ω} ⊂ Ñ .

The simplest permanence principles are the following statements.

Proposition 7
Let Ñ ∈ 2N, then

Ñ ⊂ stN =⇒ Ñ is modest; (8)
stN ⊂ Ñ =⇒ Ñ is greedy. (9)

Proof. Let Ñ ⊂ stN, denote N ′ := {m ∈ N : Ñ ⊂ {1, . . . ,m}}. We have
N \ stN ⊆ N ′. But N ′ is internal, and N \ stN is strictly external. Therefore,
N ′ 6= N \ stN, i.e., ∃m�∞ m ∈ N ′, and (13.1) holds.

Now let stN ⊂ Ñ . Put N ′ = {ω ∈ N : {1, . . . , ω} ⊂ Ñ}. By the above
arguments, N ′ is internal. stN ⊆ N ′, stN is strictly external, therefore, N ′ contains
some ω ≈ ∞. For this ω we have {1, . . . , ω} ⊆ Ñ . I
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Corollary 4
Let Ñ ∈ 2N, then

Ñ ⊂ N \ stN =⇒ ∃ω ≈ ∞ Ñ ⊂ {ω + 1, ω + 2, . . .}, (10)

N \ stN ⊂ Ñ =⇒ ∃m�∞ {m+ 1,m+ 2, . . .} ⊂ Ñ . (11)

Proof. If Ñ ⊂ N \ stN, then stN ⊂ N \ Ñ , therefore, N \ Ñ is greedy: ∃ω ≈ ∞
{1, . . . , ω} ⊂ N \ Ñ , hence (10) holds. (11) can be proven in an analogous way. I

A remarkable permanence principle is the following famous

Lemma 1 (Robinson’s lemma)
Let x ∈ RN and ∀n ∈ stN xn ≈ 0. Then ∃ω ≈ ∞ ∀n ≤ ω xn ≈ 0.

Proof. Let Ñ := {n ∈ N : n|xn| < 1}. Since stN ⊂ Ñ , Ñ is greedy. Let
ω ≈ ∞ be such that {1, . . . , ω} ⊂ Ñ . Then ∀n ≤ ω |xn| < n−1, therefore,
∀n ≤ ω xn ≈ 0. I

The other permanence principles are as follows.

Proposition 8
Let E ∈ 2R, then

E ⊂ I =⇒ ∃ ε ≈ 0 E ⊂ [−ε, ε] (modesty) ,
I ⊂ E =⇒ ∃ ε� 0 [−ε, ε] ⊂ E (greediness) ,
E ⊂ F =⇒ ∃ a�∞ E ⊂ [−a, a] (modesty) ,
F ⊂ E =⇒ ∃ a ≈ ∞ [−a, a] ⊂ E (greediness) ,

where, as before, I := {x ∈ R : x ≈ 0}, F := {x ∈ R : |x| � ∞}.

Proof. Let I ⊂ E. Set Ñ := {n ∈ N : ∀ k ≤ n |x| < k−1 =⇒ x ∈ E}. We
have N \ stN ⊂ Ñ . By (11), Ñ contains some m�∞. Therefore, |x| ≤ m−1 =⇒
x ∈ E. We left the rest of the proof as an exercise for the reader. I

14. Applications to sequences

14.1. The limit of a sequence

Let x ∈ RN (read “x is a sequence of real numbers”; usually we write xn instead
of x(n)). We assume that the reader is familiar with the ordinary definition of
convergence and the limit of x:

x is convergent (or Cauchy) ≡ (∀ε > 0) (∃N ∈ N) (p, q > N =⇒ |xp − xq| < ε),
lim
n→∞

xn = ` ≡ (∀ε > 0)(∃N ∈ N)(∀n > N) |xn − `| < ε.

It turns out that, for standard sequences, this definition can be simplified, accord-
ing to the aspirations of naturalists.

Theorem 2
Let x ∈ st(RN), then x is convergent if and only if

∀ p, q ≈ ∞ xp ≈ xq. (12)
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Let x ∈ st(RN) be convergent. Then, for n ≈ ∞ we have |x| � ∞, and
therefore xn has the shadow ` = ◦xn, which is the same for all n ≈ ∞. It is the
limit of x:

lim
n→∞

xn = ◦(xω) for ω ≈ ∞.

Proof. Let x be a standard convergent sequence of reals xn and lim
n→∞

xn = `.
This ` is standard by the transfer principle (T). Take an arbitrary ε > 0 and find
N ∈ N such that |xn−`| < ε for n > N . Once again, by (T), this N can be chosen
as standard. Let n ∈ N \ stN. We now have n > N . Therefore, |xn − `| < ε. As ε
is arbitrary, we have |xn − `| ≈ 0. We see that ∀n ≈ ∞ ◦(xn) = `. Also we know
that ∀ p, q ≈ ∞ |xp − xq| ≤ |xp − `|+ |`− xq| ≈ 0, that is xp ≈ xq.

Conversely, assume that (12) is satisfied. Consider the set Ñ := {n ∈ N :
|xn − xω| < 1}, where ω is a fixed unlimited natural number. Since the formula
p(n) ≡ |xn − xω| < 1 is internal, the set Ñ is internal, too. By (12), N \ stN ⊆ Ñ .
By (11), Ñ contains some standard nω. Hence (because xnω is standard) |xω| ≤
|xnω
| + 1 � ∞, so xω has the shadow ` :=◦ (xω). By (12), ∀n ≈ ∞ xn ≈ `.

Now take an arbitrary standard positive ε. Note that the sentence (∃N ∈ N)
(∀n > N) (|xn − `| < ε) is true. Indeed, it is sufficient to choose N ≈ ∞, and
then n > N =⇒ |xn − `| < ε. Now applying the transfer principle (T ′), we get:
(∀ ε > 0) (∃N ∈ N) (∀n > N) (|xn − `| < ε). I

Example 14
1◦ The sequence (1/n)n∈N and the number 0 are standard. For n ≈ ∞, we have

1/n ≈ 0. Therefore, lim
n→∞

1/n = 0.

2◦ Let ε 6= 0 be infinitesimal. For n ≈ ∞, we have 1/n ≈ ε. But lim
n→∞

1/n 6= ε.
This fact does not contradict theorem 2, because ε is not standard.

3◦ Let ε be as before and ∀n ∈ N xn = ε. Then ∀n xn ≈ 0, but lim
n→∞

xn = ε 6=
0. This fact does not contradict theorem 2, because the sequence (xn)n∈N is
not standard.

4◦ For n ≈ ∞ we have n · sin 1/n ≈ 1, (1 + 1/n)n ≈ e, etc. Let R be the set of
all convergent sequences x ∈ RN. Such R is a partially ordered algebra on R
relatively +, ·,≤, defined by

(αx+ βy)n = αxn + βyn, (xy)n = xnyn,
x ≤ y ⇔ (∃n ∈ N) (∀ k > n) (xk ≤ yk),

here x, y ∈ R, α, β ∈ R.

The main result concerning limits is the following.

Theorem 3
The map lim is a homomorphism of the partially ordered algebra R onto a linearly
ordered field R, i.e.

lim
n→∞

(αxn + βyn) = α lim
n→∞

xn + β lim
n→∞

yn,

lim
n→∞

(xnyn) = lim
n→∞

xn · lim
n→∞

yn,

x ≤ y =⇒ lim
n→∞

xn ≤ lim
n→∞

yn.
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The non-standard proof of this theorem is almost trivial. At first, we note that
theorem 3 is standard, therefore, by (T ′), we only need to prove it for standard
α, β, x, y. But for x ∈ stR we have lim

n→∞
xn = ◦(xω), ω ≈ ∞, and according to

theorem 1.3◦ the map r 7→ ◦r is a homomorphism of F onto stR. I
Now we will obtain something better than theorem 2.

Theorem 4
Let x ∈ st(RN). Suppose that for some ω ∈ N \ stN and for all n < ω n ≈ ∞ =⇒
xn ≈ 0. Then x is convergent and lim

n→∞
xn = 0.

We need the following interesting lemma to prove the theorem.

Lemma 2
Let k ∈ st(NN) be strictly increasing and ω ∈ N\stN. Then (∃n ∈ N\stN) (kn < ω).
(This means that when n passes from values which are � ∞ to values which are
≈ ∞, k cannot jump over ω ≈ ∞).

Proof. If n ∈ stN, then kn ∈ stN (the value of a standard function at any
standard point is standard). Therefore, stN ⊆ Ñ := {n ∈ N : kn < ω}. Since the
definition of Ñ is internal, the set Ñ is internal, too. By (9), there exists nω ∈ Ñ ,
nω ≈ ∞. As k is strictly increasing, knω

≥ nω. Hence knω
≈ ∞ and knω

< ω. I
Proof of theorem 4. Suppose that x is divergent. Then, by (T ′), there exist a

standard ε > 0 and a standard, strictly increasing k ∈ NN, such that
∀n ∈ N |xkn

| > ε. By lemma 2, there exists kn < ω which is infinite, contradicting
the assumption n ≈ ∞ =⇒ xn ≈ 0. I

Corollary 5
Let x ∈ st(RN) and ` ∈ stR. Suppose that for some ω ∈ N \ stN and for all n < ω
n ≈ ∞ =⇒ xn ≈ `. Then x is convergent and lim

n→∞
xn = `.

Indeed, the sequence (xn − `)n∈N satisfies the condition of example 14.
We recall that ` ∈ R is said to be a limit point of x ∈ RN if

(∀ ε > 0)(∀N ∈ N)(∃n > N)(|xn − `| < ε), (13)

or, equivalently, if x contains a subsequence which converges to `.

Theorem 5
Let x ∈ st(RN) and ` ∈ stR. The number ` is a limit point of x if and only if
(∃ω ≈ ∞) (xω ≈ `).

Proof. Let ` be a limit point of x and let k ∈ NN be a strictly increasing
sequence such that lim

n→∞
xkn

= `. By (T), we can choose a standard k. Then
(xkn

)n∈N is standard and, by (13), ∀n ≈ ∞ xkn
≈ `.

Conversely, let xω ≈ ` for some ω ≈ ∞. Choose standard ε > 0 and N ∈ N.
Then, there exists n > N such that |xn − `| < ε (namely, n ≈ ∞). By (T ′), we
have (13). I
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Exercise 9
1◦ Let x ∈ st(RN) be decreasing and positive. Assume that xω0 ≈ 0 for some

ω0 ≈ ∞. Prove that ∀ω ≈ ∞ xω ≈ 0.

2◦ Construct x ∈ st(RN) which is divergent, but xn ≈ 0 for ω1 < n < ω2, where
ω1 ≈ ∞ and ω2 − ω1 ≈ ∞.
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