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Quasi-arithmetic means∗∗∗

Abstract. We present a list of geometric problems with solutions that lead to known
or less known means. We also prove, by elementary means, some property for so-called
quasi-arithmetic means. We use the proved result to justify some inequalities between
the means.

1. Introduction

Let J ⊂ R denote the open interval or respectively closed or half-closed. The
sets R, R+ := (0,+∞) and R+ ∪ {0} will be also considered as intervals.

One of the most general definition of a mean is the following

Definition 1
Every function d : J × J → J satisfying

(i) ∀a, b ∈ J min{a, b} ≤ d(a, b) ≤ max{a, b},

(ii) d is a increasing function with respect to each variable

is called a mean.

In (Aczél, 1948) and (Kitagawa, 1934) it was proved that under some addi-
tional conditions on d there exists a strictly monotone function g defined on J
such that

d(a, b) = g−1(pg(a) + qg(b)), a, b ∈ J,

for some p, q ∈ (0, 1) such that p+q = 1. Such means will be called quasi-arithmetic
means.

For the purposes of this paper we modify Definition 1.

Definition 2
Let T = {(x, y) ∈ J × J : x ≥ y}. Every function d : T → J satisfying conditions
(i) and (ii) of Definition 1 is said to be a mean.
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In the sequel by a mean we understand a function in a sense of Definition 2.
There is a wide literature on means, some information may be found in (Aczél,

1948; Aczel, Dhombres, 1989; Galwani, 1927; Głazowska, Jarczyk, Matkowski,
2002; Górowski, Łomnicki, 2010; Kitagawa, 1934; Kołgomorov, 1930; Leach, Sholan-
der, 1978; Leach, Sholander, 1983; Witkowski, 2009).

2. Geometric problems leading to means

Let us assume that a quadrangle ABCD (see Fig. 1.) is a trapezium such that
AB ‖ CD, |AB| = a |DC| = b and according to Fig. 1. EF ‖ AB, |EF | = d and
DA′ ‖ CB. Denoting λ = |AE|

|ED| we express d as a function of λ. By The Intercept

D b C

E E′ d F

A A′ a B

Fig. 1.

Theorem we get
|AA′|
|EE′|

= |AD|
|ED|

= |AE|+ |ED|
|ED|

= λ+ 1.

Hence
|EE′| = |AA

′|
λ+ 1 = a− b

λ+ 1 and d = a− b
λ+ 1 + b = a+ λb

λ+ 1
and thus

d = a+ λb

λ+ 1 . (1)

Now we formulate some geometric problems leading to means. Notice the well
known problems P1-P4.

Problem 1
Find the length d of the segment EF in the ABCD (see Fig 1.) if

P1. E, F are the midpoints of the segments AD and BC, respectively;

P2. the diagonals AC and BD and the segment EF intersect at a point;

P3. the trapezes ABFE and EFCD are similar;

P4. the areas of the trapezes ABFE and EFCD are equal;
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P5. the volumes of the solids of revolution obtained by rotating ABFE and
EFCD around the line EF are equal;

P6. the volumes of the solids of revolution obtained by rotating ABFE around
the line AB and EFCD around the line DC are equal;

It is easy to see that the solution of P1 is d = a+b
2 .

Denote by S the intersection point of the diagonals AC and BD and the
segment EF (problem P2). Then by Intersection Theorem we get

λ = |AE|
|ED|

= |AS|
|SC|

= |AB|
|DC|

= a

b
.

thus
d = 2ab

a+ b
.

For the problem P3 notice that since the trapezes ABFE and EFCD are
similar we obtain

|AE|
|ED|

= |AB|
|EF |

= |EF |
|DC|

,

hence d2 = ab, and d =
√
ab.

To solve P4 denote by h1, h2 the altitudes of the trapezes ABFE and EFCD,
respectively. Let P denotes the area of the trapezium ABFE (also trapezium
EFCD). Then

λ = |AE|
|ED|

= h1

h2
= P

a+ d
· d+ b

P
= d+ b

a+ d
.

This and (1) give

d =
√
a2 + b2

2 .

Now (problem P5) let h1, h2 be defined as above, then

λ2 = h2
1
h2

2
= πh2

1
πh2

2
. (2)

On the other hand, the volumes of the solids of revolution obtained by rotating
ABFE and EFCD around the line EF are equal

πh2
1d+ 2

3πh
2
1(a− d), πh2

2b+ 1
3πh

2
2(d− b), (3)

respectively. From (2) and (3) we get

λ2 =
πh2

1(d+ 2
3 (a− d))

πh2
2(b+ 1

3 (d− b))
·
b+ 1

3 (d− b)
d+ 2

3 (a− d)
=
b+ 1

3 (d− b)
d+ 2

3 (a− d)
= d+ 2b
d+ 2a,

which by (1) yields

d = 2(a2 + ab+ b2)
3(a+ b) =

a3−b3

3
a2−b2

2
. (4)
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Finally, for the solution of P6 observe that

V1 = πh2
1d+ 1

3πh
2
1(a− d) and V2 = πh2

2b+ 2
3πh

2
2(d− b),

where h1, h2 denote the altitudes of the trapezes ABFE and EFCD, resp., and
V1, V2 are the volumes of the solids of revolution obtained by rotating ABFE
around the line AB and EFCD around the line DC, resp. Similarly as above we
get

λ2 = b+ 2d
a+ 2d ,

thus

d =
√
a2 + ab+ b2

3 =

√
a3 − b3

3(a− b) . (5)

Observe that (4) is one of the means introduced by Leach and Sholander in
(Leach, Sholander, 1978), and (5) is a Stolarsky’s mean from (Kołgomorov, 1930).

Problem 2
Consider three pairwise homothetic squares with side length a > d > b, see Fig 2.
Find d in terms of a and b.

a

d

b

Fig. 2.

Let λ = a2−d2

d2−b2 . Then

d =
√
a2 + λb2

1 + λ
.
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This yields the following relationships:

d =
√
a2 + b2

2 for λ = 1,

d =
√
ab for λ = a

b
,

d = a+ b

2 for λ = 3a+ b

a+ 3b ,

d = 2ab
a+ b

for λ = a2(a+ 3b)
b2(3a+ b) ,

d =
√
a3 + b3

a+ b
for λ = b

a
.

3. Quasi-arithmetic means

Considerations from the previous section imply that, under some assumptions
on a function g : J → R and λ, it is worth to consider the function dλg defined on
T = {(x, y) ∈ J × J : x ≥ y} and given by

dλg (a, b) = g−1
(
g(a) + λg(b)

1 + λ

)
, (a, b) ∈ T. (6)

we prove now the following result.

Theorem 1
If g : J → R is a strictly monotonic function, continuous on J and λ is a non-
negative real number, then dλg given by (6) is a mean (in a sense of Definition
2).

Proof. It is easy to see that dλg is well defined. Indeed, if for some (a, b) ∈ T
and some λ ∈ [0,+∞) we had

g(a) + λg(b)
1 + λ

− g(x) 6= 0 for every x ∈ J,

then since g is continuous,

g(a) + λg(b)
1 + λ

− g(x) > 0 for every x ∈ J (7)

or
g(a) + λg(b)

1 + λ
− g(x) < 0 for every x ∈ J. (8)

From (7) we obtain the following system of inequalities

g(a) + λg(b)
1 + λ

− (1 + λ)g(a)
1 + λ

> 0 and g(a) + λg(b)
1 + λ

− (1 + λ)g(b)
1 + λ

> 0,

which leads to a contradiction. The similar argument can be applied to (8).
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The task is now to show that

min{a, b} ≤ dλg (a, b) ≤ max{a, b}, (a, b) ∈ T. (9)

Observe that if g is a strictly increasing function, then so is g−1 and (9) is equivalent
to

g(b) ≤ g(a) + λg(b)
1 + λ

≤ g(a),

(1 + λ)g(b) ≤ g(a) + λg(b) ≤ (1 + λ)g(a),

where the last inequality holds true. Similar argument applies to the case when g
is strictly decreasing.

Finally, we prove that dλg is an increasing function with respect to each variable.
Fix a ∈ J and suppose that g is strictly increasing. Let b1, b2 ∈ J be such
that b1 > b2 and a ≥ b1, then g(b1) > g(b2), λg(b1) ≥ λg(b2), g(a) + λg(b1) ≥
g(a) + λg(b2) and in a consequence dλg (a, b1) ≥ dλg (a, b2). Now fix b ∈ J and
assume that a1 > a2 ≥ b for arbitrary a1, a2 ∈ J . We have g(a1) > g(a2),
g(a1) + λg(b) > g(a2) + λg(b) and dλg (a1, b) ≥ dλg (a2, b).

For a strictly decreasing g the proof runs similarly.

Definition 3
Let g satisfies the assumptions of Theorem 1. Every function defined by (6) will
be called a mean generated by pair (g, λ).

Theorem 2
Let dλg be a mean on a set T generated by pair (g, λ). A function ψ : [0,+∞) →
RT\{(a,a):a∈J} defined by

ψ(λ) = d̄λg ,

where d̄λg is a restriction of dλg to the set T \ {(a, a) : a ∈ J} is strictly decreasing.

Proof. Fix a, b ∈ J such that a > b and put

φ(λ) := g(a) + λg(b)
1 + λ

, λ ∈ [0,+∞).

It follows that

φ′(λ) := g(b)− g(a)
(1 + λ)2 ,

thus φ is strictly increasing (resp. strictly decreasing) if g is strictly decreasing
(resp. strictly increasing). Hence for λ1 < λ2 we have dλ1

g (a, b) > dλ2
g (a, b) and

d̄λ1
g > d̄λ2

g , which completes the proof.
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4. Means generated by the identity function

Suppose that g = IdR+ , where IdR+(x) = x for x ∈ R+, then (6) becomes

dλIdR+
(a, b) = a+ λb

1 + λ
, (a, b) ∈ R+ × R+.

Some of the means of this kind appeared in Problem 1. (problems P1-P6).
Now using Theorem 2 we establish some inequalities between means generated

by pair (IdR+ , λ). Fix a, b ∈ R+ such that a > b, then

a

b
>

√
a

b
> 1 >

√
a2+b2

2 + b√
a2+b2

2 + a
,

which yields the following relation between the harmonic, geometric, arithmetic
and quadratic mean of a and b,

2ab
a+ b

<
√
ab <

a+ b

2 <

√
a2 + b2

2 .

Moreover, the means from problems P5 and P6 are greater than the arithmetic
mean. Indeed, solving problem P5 we proved that for a > b,

λ2 =
2b+ dλIdR+

(a, b)
2a+ dλIdR+

(a, b)

which means that
λ < 1 and 2

3
a3 − b3

a2 − b2 >
a+ b

2 .

By a similar argument, from equality obtained in the solution of problem P6,

λ2 =
b+ 2dλIdR+

(a, b)
a+ 2dλIdR+

(a, b)

it follows that for a > b, √
a3 − b3

3(a− b) >
a+ b

2 .

To end this section let us remark that for arbitrary fixed a, b ∈ R+ such that
a > b we have (a

b

)µ
> 1 for µ > 0 and

(a
b

)µ
< 1 for µ < 0,

thus for λ =
(
a
b

)µ,
dλIdR+

(a, b) = abµ + baµ

aµ + bµ
<
a+ b

2 for µ > 0

and

dλIdR+
(a, b) = abµ + baµ

aµ + bµ
>
a+ b

2 for µ < 0.
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5. Some other generated means

In this section we consider means generated by pair (g, λ), where g : R+ → R
is a power or a logarithmic function.

Let g(x) = xν , x ∈ R+, ν ∈ R \ {0}. Then

dλg (a, b) =
(
aν + λbν

1 + λ

) 1
ν

, (a, b) ∈ {(x, y) : x ∈ R+, x ≥ y}.

By Theorem 2 it follows that for a > b and µ > 0 we have
(
a
b

)µ
> 1 and

dλg (a, b) < d1
g(a, b),

hence for λ =
(
a
b

)µ, (
aνbµ + aµbν

aµ + bµ

) 1
ν

<

(
aν + bν

2

) 1
ν

.

Similarly, for µ < 0 we get(
aνbµ + aµbν

aµ + bµ

) 1
ν

>

(
aν + bν

2

) 1
ν

.

Now suppose that g(x) = ln x, x ∈ R+. We have

dλg (a, b) = exp ln a+ λ ln b
1 + λ

= (abλ)
1

1+λ , (a, b) ∈ {(x, y) : x ∈ R+, x ≥ y}.

Setting again λ =
(
a
b

)µ, µ ∈ R \ {0} we get

dλg (a, b) = a
bµ

aµ+bµ b
aµ

aµ+bµ

and from Theorem 2 the following inequalities

a
bµ

aµ+bµ b
aµ

aµ+bµ <
√
ab for µ > 0,

a
bµ

aµ+bµ b
aµ

aµ+bµ >
√
ab for µ < 0.

Notice that every strict inequality obtained by Theorem 2 for (a, b) ∈ {(x, y) ∈
R+ × R+ : x ≥ y} if replaced by a its corresponding non-strict inequality holds
true for (a, b) ∈ R+ × R+.
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