Annales Universitatis Paedagogicae Cracoviensis

Studia ad Didacticam Mathematicae Pertinentia VII (2015)

Jan Górowski, Adam Łomnicki

Quasi-arithmetic means*

Abstract

We present a list of geometric problems with solutions that lead to known or less known means. We also prove, by elementary means, some property for so-called quasi-arithmetic means. We use the proved result to justify some inequalities between the means.

1. Introduction

Let $J \subset \mathbb{R}$ denote the open interval or respectively closed or half-closed. The sets $\mathbb{R}, \mathbb{R}_{+}:=(0,+\infty)$ and $\mathbb{R}_{+} \cup\{0\}$ will be also considered as intervals.

One of the most general definition of a mean is the following

Definition 1

Every function $d: J \times J \rightarrow J$ satisfying
(i) $\forall a, b \in J \quad \min \{a, b\} \leq d(a, b) \leq \max \{a, b\}$,
(ii) d is a increasing function with respect to each variable
is called a mean.
In (Aczél, 1948) and (Kitagawa, 1934) it was proved that under some additional conditions on d there exists a strictly monotone function g defined on J such that

$$
d(a, b)=g^{-1}(p g(a)+q g(b)), \quad a, b \in J
$$

for some $p, q \in(0,1)$ such that $p+q=1$. Such means will be called quasi-arithmetic means.

For the purposes of this paper we modify Definition 1.

Definition 2

Let $T=\{(x, y) \in J \times J: x \geq y\}$. Every function $d: T \rightarrow J$ satisfying conditions (i) and (ii) of Definition 1 is said to be a mean.

[^0]In the sequel by a mean we understand a function in a sense of Definition 2.
There is a wide literature on means, some information may be found in (Aczél, 1948; Aczel, Dhombres, 1989; Galwani, 1927; Głazowska, Jarczyk, Matkowski, 2002; Górowski, Łomnicki, 2010; Kitagawa, 1934; Kołgomorov, 1930; Leach, Sholander, 1978; Leach, Sholander, 1983; Witkowski, 2009).

2. Geometric problems leading to means

Let us assume that a quadrangle $A B C D$ (see Fig. 1.) is a trapezium such that $A B \| C D,|A B|=a|D C|=b$ and according to Fig. 1. $E F \| A B,|E F|=d$ and $D A^{\prime} \| C B$. Denoting $\lambda=\frac{|A E|}{|E D|}$ we express d as a function of λ. By The Intercept

Fig. 1.

Theorem we get

$$
\frac{\left|A A^{\prime}\right|}{\left|E E^{\prime}\right|}=\frac{|A D|}{|E D|}=\frac{|A E|+|E D|}{|E D|}=\lambda+1 .
$$

Hence

$$
\left|E E^{\prime}\right|=\frac{\left|A A^{\prime}\right|}{\lambda+1}=\frac{a-b}{\lambda+1} \quad \text { and } \quad d=\frac{a-b}{\lambda+1}+b=\frac{a+\lambda b}{\lambda+1}
$$

and thus

$$
\begin{equation*}
d=\frac{a+\lambda b}{\lambda+1} \tag{1}
\end{equation*}
$$

Now we formulate some geometric problems leading to means. Notice the well known problems P1-P4.

Problem 1
Find the length d of the segment $E F$ in the $A B C D$ (see Fig 1.) if
P1. E, F are the midpoints of the segments $A D$ and $B C$, respectively;
P2. the diagonals $A C$ and $B D$ and the segment $E F$ intersect at a point;
P3. the trapezes $A B F E$ and $E F C D$ are similar;
P4. the areas of the trapezes $A B F E$ and $E F C D$ are equal;

P5. the volumes of the solids of revolution obtained by rotating $A B F E$ and $E F C D$ around the line $E F$ are equal;

P6. the volumes of the solids of revolution obtained by rotating $A B F E$ around the line $A B$ and $E F C D$ around the line $D C$ are equal;

It is easy to see that the solution of P 1 is $d=\frac{a+b}{2}$.
Denote by S the intersection point of the diagonals $A C$ and $B D$ and the segment $E F$ (problem P2). Then by Intersection Theorem we get

$$
\lambda=\frac{|A E|}{|E D|}=\frac{|A S|}{|S C|}=\frac{|A B|}{|D C|}=\frac{a}{b}
$$

thus

$$
d=\frac{2 a b}{a+b} .
$$

For the problem P3 notice that since the trapezes $A B F E$ and $E F C D$ are similar we obtain

$$
\frac{|A E|}{|E D|}=\frac{|A B|}{|E F|}=\frac{|E F|}{|D C|}
$$

hence $d^{2}=a b$, and $d=\sqrt{a b}$.
To solve P 4 denote by h_{1}, h_{2} the altitudes of the trapezes $A B F E$ and $E F C D$, respectively. Let P denotes the area of the trapezium $A B F E$ (also trapezium $E F C D)$. Then

$$
\lambda=\frac{|A E|}{|E D|}=\frac{h_{1}}{h_{2}}=\frac{P}{a+d} \cdot \frac{d+b}{P}=\frac{d+b}{a+d} .
$$

This and (1) give

$$
d=\sqrt{\frac{a^{2}+b^{2}}{2}}
$$

Now (problem P5) let h_{1}, h_{2} be defined as above, then

$$
\begin{equation*}
\lambda^{2}=\frac{h_{1}^{2}}{h_{2}^{2}}=\frac{\pi h_{1}^{2}}{\pi h_{2}^{2}} \tag{2}
\end{equation*}
$$

On the other hand, the volumes of the solids of revolution obtained by rotating $A B F E$ and $E F C D$ around the line $E F$ are equal

$$
\begin{equation*}
\pi h_{1}^{2} d+\frac{2}{3} \pi h_{1}^{2}(a-d), \quad \pi h_{2}^{2} b+\frac{1}{3} \pi h_{2}^{2}(d-b) \tag{3}
\end{equation*}
$$

respectively. From (2) and (3) we get

$$
\lambda^{2}=\frac{\pi h_{1}^{2}\left(d+\frac{2}{3}(a-d)\right)}{\pi h_{2}^{2}\left(b+\frac{1}{3}(d-b)\right)} \cdot \frac{b+\frac{1}{3}(d-b)}{d+\frac{2}{3}(a-d)}=\frac{b+\frac{1}{3}(d-b)}{d+\frac{2}{3}(a-d)}=\frac{d+2 b}{d+2 a}
$$

which by (1) yields

$$
\begin{equation*}
d=\frac{2\left(a^{2}+a b+b^{2}\right)}{3(a+b)}=\frac{\frac{a^{3}-b^{3}}{3}}{\frac{a^{2}-b^{2}}{2}} . \tag{4}
\end{equation*}
$$

Finally, for the solution of P6 observe that

$$
V_{1}=\pi h_{1}^{2} d+\frac{1}{3} \pi h_{1}^{2}(a-d) \quad \text { and } \quad V_{2}=\pi h_{2}^{2} b+\frac{2}{3} \pi h_{2}^{2}(d-b),
$$

where h_{1}, h_{2} denote the altitudes of the trapezes $A B F E$ and $E F C D$, resp., and V_{1}, V_{2} are the volumes of the solids of revolution obtained by rotating $A B F E$ around the line $A B$ and $E F C D$ around the line $D C$, resp. Similarly as above we get

$$
\lambda^{2}=\frac{b+2 d}{a+2 d}
$$

thus

$$
\begin{equation*}
d=\sqrt{\frac{a^{2}+a b+b^{2}}{3}}=\sqrt{\frac{a^{3}-b^{3}}{3(a-b)}} . \tag{5}
\end{equation*}
$$

Observe that (4) is one of the means introduced by Leach and Sholander in (Leach, Sholander, 1978), and (5) is a Stolarsky's mean from (Kołgomorov, 1930).

Problem 2

Consider three pairwise homothetic squares with side length $a>d>b$, see Fig 2 . Find d in terms of a and b.

Fig. 2.

Let $\lambda=\frac{a^{2}-d^{2}}{d^{2}-b^{2}}$. Then

$$
d=\sqrt{\frac{a^{2}+\lambda b^{2}}{1+\lambda}} .
$$

This yields the following relationships:

$$
\begin{array}{ll}
d=\sqrt{\frac{a^{2}+b^{2}}{2}} & \text { for } \lambda=1, \\
d=\sqrt{a b} & \\
\text { for } \lambda=\frac{a}{b}, \\
d=\frac{a+b}{2} & \text { for } \lambda=\frac{3 a+b}{a+3 b}, \\
d=\frac{2 a b}{a+b} & \text { for } \lambda=\frac{a^{2}(a+3 b)}{b^{2}(3 a+b)}, \\
d=\sqrt{\frac{a^{3}+b^{3}}{a+b}} & \\
\text { for } \lambda=\frac{b}{a} .
\end{array}
$$

3. Quasi-arithmetic means

Considerations from the previous section imply that, under some assumptions on a function $g: J \rightarrow \mathbb{R}$ and λ, it is worth to consider the function d_{g}^{λ} defined on $T=\{(x, y) \in J \times J: x \geq y\}$ and given by

$$
\begin{equation*}
d_{g}^{\lambda}(a, b)=g^{-1}\left(\frac{g(a)+\lambda g(b)}{1+\lambda}\right), \quad(a, b) \in T \tag{6}
\end{equation*}
$$

we prove now the following result.

Theorem 1

If $g: J \rightarrow \mathbb{R}$ is a strictly monotonic function, continuous on J and λ is a nonnegative real number, then d_{g}^{λ} given by (6) is a mean (in a sense of Definition 2).

Proof. It is easy to see that d_{g}^{λ} is well defined. Indeed, if for some $(a, b) \in T$ and some $\lambda \in[0,+\infty)$ we had

$$
\frac{g(a)+\lambda g(b)}{1+\lambda}-g(x) \neq 0 \quad \text { for every } x \in J
$$

then since g is continuous,

$$
\begin{equation*}
\frac{g(a)+\lambda g(b)}{1+\lambda}-g(x)>0 \quad \text { for every } x \in J \tag{7}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{g(a)+\lambda g(b)}{1+\lambda}-g(x)<0 \quad \text { for every } x \in J \tag{8}
\end{equation*}
$$

From (7) we obtain the following system of inequalities

$$
\frac{g(a)+\lambda g(b)}{1+\lambda}-\frac{(1+\lambda) g(a)}{1+\lambda}>0 \quad \text { and } \quad \frac{g(a)+\lambda g(b)}{1+\lambda}-\frac{(1+\lambda) g(b)}{1+\lambda}>0
$$

which leads to a contradiction. The similar argument can be applied to (8).

The task is now to show that

$$
\begin{equation*}
\min \{a, b\} \leq d_{g}^{\lambda}(a, b) \leq \max \{a, b\}, \quad(a, b) \in T \tag{9}
\end{equation*}
$$

Observe that if g is a strictly increasing function, then so is g^{-1} and (9) is equivalent to

$$
\begin{gathered}
g(b) \leq \frac{g(a)+\lambda g(b)}{1+\lambda} \leq g(a) \\
(1+\lambda) g(b) \leq g(a)+\lambda g(b) \leq(1+\lambda) g(a)
\end{gathered}
$$

where the last inequality holds true. Similar argument applies to the case when g is strictly decreasing.

Finally, we prove that d_{g}^{λ} is an increasing function with respect to each variable. Fix $a \in J$ and suppose that g is strictly increasing. Let $b_{1}, b_{2} \in J$ be such that $b_{1}>b_{2}$ and $a \geq b_{1}$, then $g\left(b_{1}\right)>g\left(b_{2}\right), \lambda g\left(b_{1}\right) \geq \lambda g\left(b_{2}\right), g(a)+\lambda g\left(b_{1}\right) \geq$ $g(a)+\lambda g\left(b_{2}\right)$ and in a consequence $d_{g}^{\lambda}\left(a, b_{1}\right) \geq d_{g}^{\lambda}\left(a, b_{2}\right)$. Now fix $b \in J$ and assume that $a_{1}>a_{2} \geq b$ for arbitrary $a_{1}, a_{2} \in J$. We have $g\left(a_{1}\right)>g\left(a_{2}\right)$, $g\left(a_{1}\right)+\lambda g(b)>g\left(a_{2}\right)+\lambda g(b)$ and $d_{g}^{\lambda}\left(a_{1}, b\right) \geq d_{g}^{\lambda}\left(a_{2}, b\right)$.

For a strictly decreasing g the proof runs similarly.

Definition 3

Let g satisfies the assumptions of Theorem 1. Every function defined by (6) will be called a mean generated by pair (g, λ).

Theorem 2

Let d_{g}^{λ} be a mean on a set T generated by pair (g, λ). A function $\psi:[0,+\infty) \rightarrow$ $\mathbb{R}^{T \backslash\{(a, a): a \in J\}}$ defined by

$$
\psi(\lambda)=\bar{d}_{g}^{\lambda}
$$

where \bar{d}_{g}^{λ} is a restriction of d_{g}^{λ} to the set $T \backslash\{(a, a): a \in J\}$ is strictly decreasing.

Proof. Fix $a, b \in J$ such that $a>b$ and put

$$
\phi(\lambda):=\frac{g(a)+\lambda g(b)}{1+\lambda}, \quad \lambda \in[0,+\infty)
$$

It follows that

$$
\phi^{\prime}(\lambda):=\frac{g(b)-g(a)}{(1+\lambda)^{2}},
$$

thus ϕ is strictly increasing (resp. strictly decreasing) if g is strictly decreasing (resp. strictly increasing). Hence for $\lambda_{1}<\lambda_{2}$ we have $d_{g}^{\lambda_{1}}(a, b)>d_{g}^{\lambda_{2}}(a, b)$ and $\bar{d}_{g}^{\lambda_{1}}>\bar{d}_{g}^{\lambda_{2}}$, which completes the proof.

4. Means generated by the identity function

Suppose that $g=\operatorname{Id}_{\mathbb{R}_{+}}$, where $\operatorname{Id}_{\mathbb{R}_{+}}(x)=x$ for $x \in \mathbb{R}_{+}$, then (6) becomes

$$
d_{\mathrm{Id}_{\mathbb{R}_{+}}}^{\lambda}(a, b)=\frac{a+\lambda b}{1+\lambda}, \quad(a, b) \in \mathbb{R}_{+} \times \mathbb{R}_{+}
$$

Some of the means of this kind appeared in Problem 1. (problems P1-P6).
Now using Theorem 2 we establish some inequalities between means generated by pair $\left(\operatorname{Id}_{\mathbb{R}_{+}}, \lambda\right)$. Fix $a, b \in \mathbb{R}_{+}$such that $a>b$, then

$$
\frac{a}{b}>\sqrt{\frac{a}{b}}>1>\frac{\sqrt{\frac{a^{2}+b^{2}}{2}}+b}{\sqrt{\frac{a^{2}+b^{2}}{2}}+a}
$$

which yields the following relation between the harmonic, geometric, arithmetic and quadratic mean of a and b,

$$
\frac{2 a b}{a+b}<\sqrt{a b}<\frac{a+b}{2}<\sqrt{\frac{a^{2}+b^{2}}{2}}
$$

Moreover, the means from problems P5 and P6 are greater than the arithmetic mean. Indeed, solving problem P5 we proved that for $a>b$,

$$
\lambda^{2}=\frac{2 b+d_{\mathrm{Id}_{\mathbb{R}_{+}}}^{\lambda}(a, b)}{2 a+d_{\mathrm{Id}_{\mathbb{R}_{+}}}^{\lambda}(a, b)}
$$

which means that

$$
\lambda<1 \quad \text { and } \quad \frac{2}{3} \frac{a^{3}-b^{3}}{a^{2}-b^{2}}>\frac{a+b}{2} .
$$

By a similar argument, from equality obtained in the solution of problem P6,

$$
\lambda^{2}=\frac{b+2 d_{\mathrm{Id}_{\mathbb{R}_{+}}}^{\lambda}(a, b)}{a+2 d_{\mathrm{Id}_{\mathbb{R}_{+}}}^{\lambda}(a, b)}
$$

it follows that for $a>b$,

$$
\sqrt{\frac{a^{3}-b^{3}}{3(a-b)}}>\frac{a+b}{2}
$$

To end this section let us remark that for arbitrary fixed $a, b \in \mathbb{R}_{+}$such that $a>b$ we have

$$
\left(\frac{a}{b}\right)^{\mu}>1 \text { for } \mu>0 \quad \text { and } \quad\left(\frac{a}{b}\right)^{\mu}<1 \text { for } \mu<0
$$

thus for $\lambda=\left(\frac{a}{b}\right)^{\mu}$,

$$
d_{\mathrm{Id}_{\mathbb{R}_{+}}}^{\lambda}(a, b)=\frac{a b^{\mu}+b a^{\mu}}{a^{\mu}+b^{\mu}}<\frac{a+b}{2} \quad \text { for } \mu>0
$$

and

$$
d_{\mathrm{Id}_{\mathbb{R}_{+}}}^{\lambda}(a, b)=\frac{a b^{\mu}+b a^{\mu}}{a^{\mu}+b^{\mu}}>\frac{a+b}{2} \quad \text { for } \mu<0 .
$$

5. Some other generated means

In this section we consider means generated by pair (g, λ), where $g: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a power or a logarithmic function.

Let $g(x)=x^{\nu}, x \in \mathbb{R}_{+}, \nu \in \mathbb{R} \backslash\{0\}$. Then

$$
d_{g}^{\lambda}(a, b)=\left(\frac{a^{\nu}+\lambda b^{\nu}}{1+\lambda}\right)^{\frac{1}{\nu}}, \quad(a, b) \in\left\{(x, y): x \in \mathbb{R}_{+}, x \geq y\right\}
$$

By Theorem 2 it follows that for $a>b$ and $\mu>0$ we have $\left(\frac{a}{b}\right)^{\mu}>1$ and

$$
d_{g}^{\lambda}(a, b)<d_{g}^{1}(a, b),
$$

hence for $\lambda=\left(\frac{a}{b}\right)^{\mu}$,

$$
\left(\frac{a^{\nu} b^{\mu}+a^{\mu} b^{\nu}}{a^{\mu}+b^{\mu}}\right)^{\frac{1}{\nu}}<\left(\frac{a^{\nu}+b^{\nu}}{2}\right)^{\frac{1}{\nu}}
$$

Similarly, for $\mu<0$ we get

$$
\left(\frac{a^{\nu} b^{\mu}+a^{\mu} b^{\nu}}{a^{\mu}+b^{\mu}}\right)^{\frac{1}{\nu}}>\left(\frac{a^{\nu}+b^{\nu}}{2}\right)^{\frac{1}{\nu}}
$$

Now suppose that $g(x)=\ln x, x \in \mathbb{R}_{+}$. We have

$$
d_{g}^{\lambda}(a, b)=\exp \frac{\ln a+\lambda \ln b}{1+\lambda}=\left(a b^{\lambda}\right)^{\frac{1}{1+\lambda}}, \quad(a, b) \in\left\{(x, y): x \in \mathbb{R}_{+}, x \geq y\right\}
$$

Setting again $\lambda=\left(\frac{a}{b}\right)^{\mu}, \mu \in \mathbb{R} \backslash\{0\}$ we get

$$
d_{g}^{\lambda}(a, b)=a^{\frac{b^{\mu}}{a^{\mu}+b^{\mu}}} b^{\frac{a^{\mu}}{a^{\mu}+b^{\mu}}}
$$

and from Theorem 2 the following inequalities

$$
\begin{aligned}
& a^{\frac{b^{\mu}}{a^{\mu}+b \mu}} b^{\frac{a^{\mu}}{a^{\mu}}+b^{\mu}}<\sqrt{a b} \text { for } \mu>0, \\
& a^{\frac{b^{\mu}}{a^{\mu}+b^{\mu}}} b^{\frac{a^{\mu}}{a^{\mu}+b^{\mu}}}>\sqrt{a b} \text { for } \mu<0 .
\end{aligned}
$$

Notice that every strict inequality obtained by Theorem 2 for $(a, b) \in\{(x, y) \in$ $\left.\mathbb{R}_{+} \times \mathbb{R}_{+}: x \geq y\right\}$ if replaced by a its corresponding non-strict inequality holds true for $(a, b) \in \mathbb{R}_{+} \times \mathbb{R}_{+}$.

References

Aczél, J.: 1948, On mean values, Bull. Amer. Math. Soc. 54(4), 392-400.
Aczel, J., Dhombres, J.: 1989, Functional equation in several variables, Vol. 31, Cambridge Univ. Press, Cambridge-New York-Rochelle-Melbourne-Sydney.
Galwani, L.: 1927, Dei limiti a cui tendono alcune media, Boll. Un. Math. Ital. 6, 173179.

Głazowska, D., Jarczyk, W., Matkowski, J.: 2002, Arithmetic mean as a linear combination of two quasi-arithmetic means, Publ. Math. Debrecen 61, 455-467.
Górowski, J., Łomnicki, A.: 2010, O średnich, Ann. Univ. Paed. Cracov. Studia ad Didacticam Math. Pertinentia 3, 55-66.

Kitagawa, T.: 1934, On some class of weighted means, Proc. Phys.-Math. Soc. Japan 16(3rd series), 117-126.
Kołgomorov, A.: 1930, Sur la notion de la moyenne, Alti Accad. Naz. Lincei 12(6), 388391.

Leach, E., Sholander, M.: 1978, Extended mean values, Amer. Math. Monthly 85, 84-90.
Leach, E., Sholander, M.: 1983, Extended mean values ii, J. Math. Appl. 92, 207-223.
Witkowski, A.: 2009, Comparison theorem for two-parameter means, Math. Inequal. Appl. 12, 11-20.

Instytut Matematyki
Uniwersytet Pedagogiczny
ul. Podchorażych 2
PL-30-084 Kraków
e-mail jangorowski@interia.pl
e-mail alomnicki@poczta.fm

[^0]: *Średnie quasi-arytmetyczne
 2010 Mathematical Subject Classification: Primary: 26E60, 26D07
 Key words and phrases: Quasi-arithmetic means, inequalities involving means, extended mean values, means in geometry

