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Abstract. In this research, three problems faced by Leonardo Pisano, cal-
led Fibonacci, are dealt with. The main purpose is to show that history of
mathematics can offer interesting material for mathematics education. The
approach to the use of history of mathematics in mathematics education
cannot be merely historical, but adapted to the needs of the explanations in
a classroom. In the course of this paper, the meaning of such assertion will
be clarified. A further purpose is a trying to explore the relations history of
mathematics-mathematics education-advanced mathematics. Last, but not
the least, a further aim is to offer a specific series of interesting material to
the teacher in order to develop stimulating lessons. The material here ex-
pounded is conceived for pupils frequenting the third and the fourth years
of the high school, but, with minor modifications, it can be adapted to the
fifth year of the high school and to the initial years of the scientific faculties
at the university.

1. Introduction

Federigo Enriques (1871-1946) claimed on several occasions there is not a clear
distinction between advanced mathematical research, history of mathematics and
mathematics education.1 Given the extreme specialization of advanced mathema-
tics (which existed already in Enriques’ epoch) and since history of mathematics
and mathematics education have also become specialized fields of research, Enri-
ques’ assertion ought seem paradoxical or wrong, at all. In contrast to this, the
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ideas expounded by Enriques hold a profound meaning and express a part of the
truth, though, probably, not the whole truth.

I will refer to a specific example, drawn from Fibonacci’s (1170-1245?) Liber
Quadratorum (1225), in which a conspicuous series of ideas to catch the relations
between advanced mathematics, history of mathematics and mathematics educati-
on exists. Since the main approach of this paper is mathematics-education centred
and, after all, a possible concrete use of Fibonacci’s technique in an educational
context will be shown, the references to history of mathematics will be limited to
what is strictly necessary to prove the plausibility of Enriques’ thesis. Thence, this
research offers a double reading-key:

1) A support to Enriques’ conception, according to which – at least in some
circumstances – mathematical research, mathematics education and history
of mathematics can be tied by a thorough link;

2) The possible use of some techniques and methods used along history of ma-
thematics in an education context. In particular the content of this paper can
be presented to the pupils when they deal with the principle of mathematical
induction, this means, in general, when they frequent the third-fourth year
at the high school.

I have no claim to provide a general theory of the relations history of mathematics-
mathematics education since, as I have explained in other works2, I am convinced
that such a general theory does not exist, but profound connections do.

2. References to the figure of Fibonacci and to his works

The figure of Leonardo Pisano, called Fibonacci, is so well known that here
I will only refer to some of his main features, perhaps useful for the reader not
involved in history of Medieval mathematics3: Leonardo was the son of Guglielmo
Bonacci, who was publicus scriba (namely a delegate) of Pisa maritime republic
abroad. In 1185 Guglielmo was transferred to Bugia (nowadays in Algeria) as a re-
sponsible of Pisa’s commercial business in that land. The young Leonardo followed
his father in Bugia. In the Incipit of his famous Liber abaci (1202, 1228)4 Fibo-
nacci himself writes to have lived in Bugia and to have travelled to Egypt, Syria,

2 Bussotti, 2014; Bussotti, 2015.
3 I mention here some significant works on Fibonacci without any claim to be exhaustive (the

literature on Fibonacci is huge): Boncompagni, 1852; Boncompagni, 1854; Bussotti, 2008a, p. 234-
249; Bussotti, 2008b, p. 43-61; Favaro, 1874; Franci, 2002; Genocchi, 1855a; Genocchi, 1855b,
Genocchi, 1855c, Genocchi, 1857; Grimm, 1973; Horadam, 1991; Lüneburg, 1991; Picutti, 1979;
Picutti, 1983; Pisano, Bussotti, 2015; Rashed, 1994; Rashed, 2003; Woepcke, 1854-55; Woepcke,
1860-61.

4 Fibonacci, 1228, 1857, p. 1. The works by Fibonacci have been published by Baldassare
Boncompagni. See Fibonacci, 1228, 1857 (Liber Abaci); Fibonacci, 1862a, p. 227-252 (Flos);
Fibonacci, 1862b, p. 253-283 (Liber Quadratorum); Fibonacci, 1862c, p. 1-224 (Practica Geome-
triae). The Liber Abaci has been translated into English by L.E. Sigler (Sigler, 2002); The Liber
Quadratorum has been translated into French by P. Ver Eecke (Fibonacci, 1952) and into English
by L. E. Sigler (Fibonacci, 1988). The Practica Geometriae has been edited and translated into
English with great care by B. Hughes (Hughes, 2008).
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Sicily and Byzantium to improve his knowledge of mathematics. Thence Leonardo
reached a – presumably – good knowledge of Arabic mathematics. Fibonacci came
in contact with the Hindu-Arabic digits and decimal positional system, imported
into the Arabic countries from India, as well as with Arabic algebra and Dio-
phantine tradition, which was alive and flourishing in the Arabic world. Fibonacci
wrote a series of important works, in which his ingenious originality, the knowledge
of Euclid’s Elements and the acquisitions deriving from the Arabic mathematics
converge to create a quite stimulating picture:

A) The Liber abaci is surely the most famous of Fibonacci’s works. It is a huge
book divided into fifteen chapters, where Fibonacci introduces the calculati-
ons with the Hindu-Arabic digits, namely the four arithmetical operations,
the calculations with fractions, the way to extract square and cubic roots
and a numerous series of problems – in general concerning – transactions, ex-
change of moneys, business societies among partners and so on. Usually, but
not always, these problems can be solved by system of equations of first de-
gree. Other problems concern numbers. In the 12th chapter of the Liber abaci,
the well known rabbit-problem is dealt with, where the Fibonacci-series is
introduced. The Liber was a monumental work and impressed Fibonacci’s
contemporaries5. Although the introduction of the Hindu Arabic digits is
documented in the Western world before Fibonacci6, there is no doubt that
the previous works on this subject were not comparable with Fibonacci’s as
to completeness, competency and clearness. The Liber can be considered an
advanced handbook, with several ideas and problems also belonging to the
then high mathematics.

B) Another significant work is the Flos, written around 1224-1225, in which
Leonardo, answering to a problem proposed to him by the court mathema-
tician of the Emperor Friedrich the second of Swabia, Giovanni da Palermo,
showed that the equation

x3 + 2x2 + 10x = 20

does not have any Euclidean irrational as a solution. Here Fibonacci develops
a series of arguments, which, nowadays, could be transformed into interes-
ting didactical consideration on the limits of the use of some instruments to
solve certain mathematical problems. In the specific case, the use of rule and
compass, which could be connected to the three classical Greek geometrical
problems: duplication of the cube, squaring of the circle, trisection of the
angle and to modern algebraic approach to these questions.
Around 1220-1221 Leonardo also wrote a Pratica Geometriae. Though this
book has some interesting aspects, it is, in my perspective, less interesting
than the other works. Two further contributions by Leonardo: the libro di

5 For the references to this fascinating and difficult historiographical problem, I refer to Pisano,
Bussotti, 2015. In that paper we also offer precise indications on the state of art regarding this
subject.

6 See previous note.
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merchaanti o detto di minor guisa and the Libro sopra il 10◦ di Euclide are
lost.

C) However, the most surprising and profound work by Fibonacci is the Liber
Quadratorum. The origin of this contribution is due to a further problem
posed by Giovanni da Palermo to Leonardo: to solve in whole or rational
numbers the system of two equations:{

x2 + 5 = y2

x2 − 5 = z2

As a matter of fact, Leonardo proposes an entire and coherent theory - develo-
ped in the twenty propositions of the Liber - concerning a sequence of interrelated
problems with the squares. The most interesting aspect of the Liber is probably
that methodological: Leonardo used an approach, which is in part influenced by
Euclid’s geometrical tradition, in part by Diophantus’ and Arabic tradition, but
which is, in great part, original. As we will see, it is based on the idea to use
the sums of consecutive integer numbers to solve the problems connected to the
squares. Since my aim is to exploit Leonardo’s method in an education perspective
I refer to the literature for both the mathematical and genetic-historical problems
connected to the Liber Quadratorum7. I will focus on three propositions. Each
section will include the explanation of Leonardo’s approach and – in a separate
box – the didactical considerations. The section 5 will also present a box regar-
ding the relations history of mathematics – mathematics education – advanced
mathematics.

It is necessary to point out that, as to the figure of Leonardo, there are several
questions: a) what exactly were his sources of inspirations; b) why did he succeed in
introducing the Hindu-Arabic numerals in Western Europe; c) what is his heritage.
In particular: how much did he directly influence the Western mathematics and
mathematics education – specifically the abacus schools and the abacus treatises
– in the late Middle Age. On these fascinating historical problems, I have to refer
to the literature8, because, as already pointed out, my aim in this paper is not
purely historical.

3. Squares obtained as sum of the successive odd numbers

The first proposition of the Liber Quadratrum is a rather dense introduction to
the topics dealt with in the course of the book. In the second proposition Leonardo
writes:

I want to prove why the ordered series of the squares arises from the ordered collection
of the odd numbers starting from 1 to the infinity.9

7 As to the Liber Quadratorum see specifically: Bussotti, 2008a, p. 234-249; Bussotti, 2008b,
p. 43-61; Genocchi, 1855b; Genocchi, 1855c; Picutti, 1979; Rashed, 1994; Rashed, 2003; Woepcke,
1854-55. Useful references in Fibonacci, 1952 and Fibonacci, 1988.

8 The literature on this subject is huge. Detailed references exist in Pisano, Bussotti, 2013
and Pisano, Bussotti, 2015.

9 Fibonacci, 1225, 1854, p. 255. Original Latin text: ”Volo demonstrare quare ex ordinata
imparium collectione, ad uno incipiendo ad infinitum egrediatur ordinata series quadratorum”.
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Fibonacci does not claim the priority of this discovery. But – as far as we know
– his way of reasoning is original. He argues like this

A B GT DK EL ZM IN

Ryc. 1.

The segments AB, BG, GD, . . . represent the successive numbers, so that
AB = 1; BG = 2; GD = 3, and so on. The exponents T , K, L, . . . have a different
meaning as they indicate sums: each one indicates the sum of the two previous
numbers. So that T is the sum of AB and BG, thence T = 3; K is the sum of BG
and GD, so that K = 5, and so on. Therefore, the exponents indicate the series
of the odd numbers. Each odd number has a double representation in this figure
by Fibonacci. For example, 3 is represented by GD and by T ; 5 is represented by
EZ and by K, and so on. Fibonacci reasons as follows:

1. Given any number ZI, the relation

ZI2 = EZ2 + EZ + ZI (1)

holds, being EZ + ZI = N . In modern terms this simply means that (n +
1)2 = n2 +n+(n+1). Relying upon the formula for the square of a binomial
proved by Euclid in Elements, II, 4, Fibonacci had proved identity (1) in the
first proposition of the Liber Quadratorum.

2. Applying the same formula as (1), one obtains EZ2 = DE2 + DE + EZ,
where DE + EZ = M . This formula can be applied till reaching BG2 =
AB2 + AB + BG = 1 + T = 1 + 3.

3. Therefore GD2 = BG2 +BG+GD = 1+T +K = 1+3+5, because BG2 =
1 + T and BG + GD = K. It is clear that this procedure can be iterated
obtaining each square as the sum of the numbers 1+T +K +L+M +N +. . . ,
namely the successive odd numbers. This proves the proposition.

Didactical considerations.
A) The methodology. From an educational point of view the logical and metho-

dological considerations are important for the pupils to catch that mathematics is
not only a series of results obtained in a mechanical way once and forever. It is also
a set of different methods and way of reasoning, by means of which the men reached
the results, often with a conspicuous work and labour. The proof of this proposition
by Fibonacci is easy, but it is paradigmatic of a procedure he also applied to more
complicated problems. The logic of this method has to be clearly explained to the
pupils. For the explanation, let us symbolize like this:

Proposition q=“every square is the sum of an initial segment of odd numbers”
(this is the proposition to prove).

Proposition p=”(n + 1)2 = n2 + n + (n + 1)”.
By the application of proposition p to any number (we indicate it by n + 1,

Leonardo by ZI), it possible to descend to 22. But for 22, proposition q holds, too,
because 22 = 1 + 3. Then the ascending phase begins and, by the replacements
showed in the item 3., the proposition q is proved. Thence, Leonardo’s methodology
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has a descending and an ascending phase.
Let us now propose to the students a modern demonstration by mathematical

induction:
Basis of the induction: 22 = 1 + 3
Inductive step: let us suppose that n2 = 1 + 3 + · · ·+ (2n− 1) , then

(n + 1)2 = 1 + 3 + · · ·+ (2n− 1) + (2n + 1)

which proves the proposition.
The similarities between the two proofs are evident and the teacher has to point

out: i) in the modern inductive proof, there is the basis 22 = 1 + 3, identity, which,
as seen, is fundamental in Fibonacci’s argument, too; ii) the inductive step in Fibo-
nacci’s demonstration can be directly obtained by applying the proposition p and
supposing that proposition q is valid until a number n. Therefore the two proce-
dures are perfectly equivalent from a logical point of view. Then the question: why
did Fibonacci add the descending phase, which is useless in a merely mathematical
perspective? The answer to this question is very instructive because it points out
the human aspect of mathematics. The main consideration concerns exactly the in-
ductive step: in Leonardo’s reasoning the function of our inductive step is replaced,
in fact, by the series of descending identities

ZI2 = EZ2 + EZ + ZI
EZ2 = DE2 + DE + EZ
. . .
BG2 = AB2 + AB + BG

The ascending phase consists in a mere replacement of values, according to what
already seen, starting from the identity BG2 = AB2 + AB + BG = 1 + T , which is
the basis of the induction.

Once explained the logic of Fibonacci’s method, let us consider the reason why
he presented such a demonstration: in the epoch in which Leonardo wrote, a set of
standard methods – as mathematical induction – applicable to number theory had
not yet been created. It should be clarified to the pupils that the formalization of
the inductive basis and inductive step needs a certain level of symbolization and
formalization:

Symbolization, because – in the case of our proof by mathematical induction,
we have written the last addend of the sum, which constitutes the square of n, as
2n+1. This implies the capability to use a letter as n to indicate a number in general
and the idea to write a number in function of a modulus, which is 2 in the case of
2n + 1. These skills were acquired only in the 17th century with mathematicians
as Pierre de Fermat (1601-1665) and Blaise Pascal (1623-1662), although – as we
will see in section 5.1.- Fibonacci seems, in some circumstances, to have arrived
close to the concept of modulus. It is not a case that mathematical induction in
modern terms is present in the Triangle Arithmetique by Pascal. For, even if before
Pascal some methods similar to mathematical induction were conceived and some
scholars date back this method to a period preceding Pascal, I am convinced that
the founder of modern mathematical induction was Pascal10. Fermat developed the
method of infinite descent, which has similarities – but also profound differences –
with mathematical induction11.
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Formalization, which consists in operating on the numerical forms according
to the rules and formulas of our algebra. But, in Fibonacci’s period, despite the
conspicuous progresses made by the Arabic mathematicians, the formal calculus –
we could say the literal calculus - almost did not exist. The numbers were, in general,
associated to segments of straight lines or anyway, at least in the Western world, the
geometrical representation played still a pivotal role. Fibonacci made considerable
progresses in this sense because, for example, the idea to represent the number in two
different ways within a sole proof is rather audacious: in the analysed case, i.e., 5 is
represented by K, but also by BG+GD, according to the necessity. Furthermore, the
geometrical representation is a sort of psychological-didactical support rather than a
necessity intrinsic to the proof. This means that Fibonacci probably had something
similar to the concept of any number, but his expressive means allowed him to obtain
a certain level of formalization, by which it was difficult to express and conceive
the necessary formal steps typical of mathematical induction. Notwithstanding, he
conceived a method, which resembles mathematical induction and for which, his
level of symbolization and formalization was enough. This is a very interesting
lesson for the pupils because they can understand, by means of an easy example,
the profound sense in which mathematics is a historical and human activity tied
to the scientific context of the period: Fibonacci’s method is redundant only in our
eyes. In fact, it is extremely innovative.

B) Relations with infinity. The following considerations could be developed
jointly with the teacher of philosophical and historical disciplines: the descending
phase of Leonardo’s proof could also be interpreted as a reluctance to resort to
infinity, also in its potential form, or at least as the intention to limit as much as
possible the resort to infinity. Indeed, this phase – which, in Leonardo’s way of reaso-
ning, not in ours, is quite important – operates between two finite limits: the initial
number ZI, which is arbitrary, but finite and given in the specific context, and the
number BG = 2. This scheme is completely finitary in the sense that it involves
a finite segment of integer numbers in descent, from ZI to 2. One of the reasons
why Fibonacci tried to tie the ascending phase, which involves the whole potentially
infinite series of the integers, to the descending one, is also probably the attempt to
create a logical dependence of a potentially infinite ascent from a finite descent. For,
it is clear that Fibonacci had an almost dynamical vision of his procedure; a sort of
movement, which, starting from an initial point (ZI) reached a minimum (2) after
which the ascending phase began. Although the modern mathematical induction
is not seen by us as a dynamical procedure, it is a scheme in ascent, in which the
potential infinity is directly involved and there is no attempt to create a dependence
of its on a finitary scheme as Fibonacci’s descent. According to my interpretation,
this is a proof of how the mental and psychological presuppositions can also play
a role in the way in which mathematics is created and developed. The discussion
on the concept of infinity in the middle ages as well as on the relations between
science-mathematics and mentality of a certain epoch, are typically interdisciplina-
ry fields, which – at least on some occasions – could be shared by the teachers of
mathematics and of history or philosophy.

Now I will propose an example of a more complex proof carried out by Leo-
nardo’s method to show that its range of application is wider one could think of.

10 As to Pascal and mathematical induction see Palladino, Bussotti, 2002; Bussotti, 2004.
11 A complete work on the infinite descent, where Fermat plays a fundamental role, is Bussotti,

2006.
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4. Leonardo’s proof of the identity (2n − 1)(2n + 1)[(2n − 1) +
(2n + 1)] = 12[12 + 32 + 52 + ... + (2n− 3)2 + (2n− 1)2]

The 7th and 8th proposition of the Liber Quadratorum proves two interesting
propositions by means of a technique similar to the one expounded in the previous
section. In the 7th proposition Leonardo proves that

n(n + 1)[n + (n + 1)] = 6(12 + 32 + 52 + · · ·+ n2),

while in the 8th one, he demonstrates the identity referred to in the title of this
section. I will focus on proposition 8.

Fibonacci considers the series of the odd numbers. He represents them in a
line so that AB = 1; BG = 3; GD = 5; DE = 7; EZ = 9,. . .

A B G D E I Z

Ryc. 2.

Since, DZ = DE + EZ, Leonardo claims he has to prove that

DE · EZ ·DZ = 12(AB2 + BG2 + GD2 + DE2), (2)

which, posing DE = 2n− 1 and EZ = 2n + 1, is exactly our proposition.
Leonardo considers DE = EI, so that IZ = 2. Since the successive odd

numbers are indicated in the figure, it is GD = DE − 2 and GE = 2DE − 2.
Hence GD ·DE = DE2 − 2DE. Therefore

CD ·DE ·GE = (DE2 − 2DE)(2DE − 2) = 2DE3 − 6DE2 + 4DE (3)

Now Fibonacci adds 12DE2 to the value in (3), thus obtaining

GD ·DE ·GE + 12DE2 = 2DE3 + 6DE2 + 4DE (4)

But DE = EI, thence EZ = DE +IZ = DE +2 and DZ = 2DE +2. This means
that DE · EZ = DE2 + 2DE. Therefore,

DE · EZ ·DZ = 2DE3 + 6DE2 + 4DE (5)

That is, from (4) and (5)

GD ·DE ·GE + 12DE2 = DE · EZ ·DZ (6)

By the same reasoning, Fibonacci constructs a descent. For, by analogous steps as
those used to prove identity (6), it is possible to show that

BG ·GD ·BD + 12GD2 = GD ·DE ·GE (7)

Thus, from (6) and (7)

BG ·GD ·BD + 12(GD2 + DE2) = DE · EZ ·DZ (8)
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By the same reasoning, it will be shown that

BG ·GD ·BD = AB ·BG ·AG + 12BG2 (9)

So that, from (8) and (9), one gets

AB ·BG ·AG + 12(BG2 + GD2 + DE2) = DE · EZ ·DZ (10)

However, Fibonacci continues, since AB = 1, BG = 3 and AG = 4, the product
AB ·BG ·AG = 12 , or 12AB, if one wishes to indicate the unit, as Fibonacci, by
AB. Thence

12(AB2 + BG2 + GD2 + DE2) = DE · EZ ·DZ (11)

Being AB, BG, GD,. . . the successive odd numbers, this proves the theorem. Ob-
viously the reasoning works whatever the numbers DE, EZ and DZ are. Thence
it is true in general.

Fibonacci adds some interesting corollaries on which I do not focus. I only
add that by propositions 7 and 8, it is possible to deduce the famous formula by
Archimedes on the sum of squares12. For, from proposition 6, it follows immediately

12 + 32 + 52 + · · ·+ n2 = n(n + 1)(2n + 1)
6 . (12)

Didactical considerations. The same considerations as those presented in the pre-
vious section can be developed. It is important to point out that, in this case, the
particular method of Leonardo, consisting of a descent followed by an ascent, is
applied to prove a far more difficult theorem, this means it is not only of historical
interest, but it is a performative method, too. The teacher should point out that,
in this case, even more than in the theorem presented in the previous section, the
decisive inductive step is represented by the formula, which allows Fibonacci to re-
ach the identity (10). His inductive step is in descent, whereas for us, it is in ascent.
The basis of the induction, which permits the prove of the theorem - namely the
identity AB ·BG ·AG = 12, represents, hence, the last step in Fibonacci’s methods,
while, in the modern mathematical induction, it is the first one.

5. The equation x2−y2

y2−z2 = a
b
(a>b)

In this equation - which constitutes the 18th proposition of the Liber Qua-
dratorum - every letter indicates an integer. I have translated the language of
Fibonacci into the modern symbolism because, in what follows, I will not focus
on the problems of symbolism and, hence, the transcription in modern symbols
makes the explanation easier.

From a mathematical standpoint, this equation represents a far more difficult
problem than the identities analysed in the sections 3. and 4. A complete theory,

12 This result is obtained by Archimedes in the 10th proposition of the Spirals.
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inside which it was solved, was discovered by Lagrange (1737-1813)13. Nonetheless,
the considerations developed by Fibonacci are elementary – though rather refined
– and they are particularly suitable to catch: a) his technique of the ”successive ad-
dends”; b) the relations history of mathematics-mathematics education-advanced
mathematics.

Before entering into Fibonacci’s reasoning, it is necessary to remind the reader
two easy statements he proved in the 17th proposition of the Liber:

1) Given two consecutive odd numbers (2n + 1) and (2n + 3), it holds

(2n + 3)2 = (2n + 1)2 + 8(n + 1) (13)

2) Given two consecutive even numbers 2n and (2n + 2), it holds

(2n + 2)2 = (2n)2 + 4(2n + 1) (14)

5.1. The equation x2−y2

y2−z2 = a
b the three elementary cases

Fibonacci distinguishes his solution in cases.
The first analysed case takes places when a = b + 1 (in what follows it is

supposed a > b, but the reasoning is the same in the opposite hypothesis). The
solution is easy and can be obtained for every a. Fibonacci offers an example,
which, however, is paradigmatic of a general demonstration. He considers a = 11;
b = 10. Referring to proposition (13), it is

212 = 192 + 10 · 8; 232 = 212 + 11 · 8

Thence
232 − 212

212 − 192 = 212 + 11 · 8− 212

192 + 10 · 8− 192 = 11
10 .

Therefore x = 23, y = 21, z = 19 are the solutions.
To get a general proof, it is enough to pose a = n + 1; b = n. The solutions

are: x = 2n + 3; y = 2n + 1; z = 2n− 1, because, according to proposition (13), it
is

(2n + 3)2 − (2n + 1)2

(2n + 1)2 − (2n− 1)2 = (2n + 1)2 + 8(n + 1)− (2n + 1)2

(2n− 1)2 + 8n− (2n− 1)2 = n + 1
n

= a

b

The second analysed case concerns the condition a = b + 2.
Once again, Fibonacci provides a paradigmatic example. He considers a = 11;

b = 13. He adds the two numbers, obtaining 24, divides 24 by 4 and multiplies the
result by 2, thus obtaining 12 (in practice he divides the sum by 2). The number
12 is the ”central” square, that is y. The other two numbers are x = 14, z = 10.
For, it is

13 Lagrange’s fundamental work on this subject is Lagrange, 1769. For detailed explanations
of Lagrange’s method, see Bussotti, 2006, p. 299-341.
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142 − 122

122 − 102 = 122 + 4 · 13− 122

102 + 4 · 11− 102 = 13
11 .

The general demonstration of Fibonacci’s method relies upon the identity (14),
because, posed a = 2n + 1; b = 2n − 1, obviously their sum divided by 2 is 2n.
One has

(2n + 2)2 − (2n)2

(2n)2 − (2n− 2)2 = (2n)2 + 4(2n + 1)− (2n)2

(2n)2 + 4(2n− 1)− (2n− 2)2 = 2n + 1
2n− 1 = a

b
.

What follows is very interest and shows the profoundness of Fibonacci’s though:
Leonardo poses this problem, let us suppose that a = 21, b = 19. Now he requires
three specific squares who solve our equation, with the further condition their bases
are numbers of the form 3n. He offers the following canon: sum the two numbers,
19 + 21 = 40, divide (as in the previous case) by 4, obtaining 10, multiply 10 by
3, obtaining 30. This is the central square, the other two being 33 and 27. Indeed,
it is

332 − 302

302 − 272 = 21
19

How did he reach this amazing result? Probably Fibonacci had studied, for
every modulus, the differences of two consecutive squares (this is the circumstance
in which Leonardo seems to have caught important aspects of the concept of
modulus). Thence mod. 3n, we have

(3n + 3)2 − (3n)2 = 9(2n + 1) (15)

Therefore, let us pose a = 2n + 1; b = 2n− 1, so that a + b = 4n, number which,
divided by 4, produces n. Let us now considers x = 3n + 3; y = 3n; z = 3n− 3. It
will be:

(3n + 3)2 − (3n)2

(3n)2 − (3n− 3)2 = (3n)2 + 9(2n + 1)− (3n)2

(3n)2 + 9(2n− 1)− (3n− 3)2 = 2n + 1
2n− 1 = a

b
.

As Fibonacci points out, this procedure can be applied to every modulus, 4n,
5n, 6n, and so on. For example mod. 5n, the difference between two consecutive
numbers 5n + 5 and 5n is, obviously, 25(2n + 1)14. It will be, hence, necessary to
divide a + b by 4 and multiply the result by 5, thus obtaining the central square,
whose root is 5n, the other two roots will be 5n + 5 and 5n − 5. For example, if
a = 21, b = 19, the three roots are x = 55, y = 50, z = 45, thus obtaining

552 − 502

502 − 452 = 21
19 .

The third and last elementary case takes place when both a and b are squares.
Let us pose a = x2

1; b = y2
1 . The three solutions are then given by x = x2

1; y = x1y1;
14 In general, such a difference, for any modulus kn is k2(2n + 1), which is an extension of the

identities (13) and (14).
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z = y2
1 . This is the least interesting case, whose proof derives immediately by

applying the properties of the proportions:

x4
1 : x2

1y2
1 = x2

1y2
1 : y4

1

(x4
1 − x2

1y2
1) : x4

1 = (x2
1y2

1 − y4
1) : x2

1y2
1

(x4
1 − x2

1y2
1) : (x2

1y2
1 − y4

1) = x4
1 : x2

1y2
1 = x2

1y2
1 = a : b.

Fibonacci offers the example of a = 25, b = 16. In this case, it will be x = 25,
y = 20, z = 16.

Didactical considerations. What dealt with in this section induces several observa-
tions.

A) Relation between proofs and numerical examples. In order to prove his state-
ments Fibonacci uses specific numerical values and not general symbols, hence one
could thought that his proofs are not valid, but are limited to those specific cases
analysed by him. In fact, this is not true because his examples are paradigma-
tic. Through this expression, I indicate an example in which the general numeri-
cal forms can be replaced to the specific numbers because all the numbers have
a precise form, which can be identified (being this form 2n + 1 or 3n, or 5n, or
whatever it is), thus obtaining a rigorous proof. All the demonstrations examined
in the present section have this feature. Therefore, Leonardo’s arguments are valid
in general, though apparently based on examples. I think, it is a common expe-
rience, shared by the teachers of mathematics, to observe that – especially while
dealing with theorems concerning integers – that several – not all - pupils do no
exactly catch the fundamental difference between a demonstration and a propositi-
on verified for all the examined examples, but not proved. After having explained
Fibonacci’s argumentations, in order to clarify this difference, a teacher could con-
sider the famous theorem by Fermat that every prime of the form 4n + 1 is the
sum of two squares. He/she could begin to decompose these primes beginning with
5 = 12 + 22; 13 = 22 + 32; 17 = 12 + 42; 29 = 22 + 52. . . . . It could be compre-
hensible that the pupils asked if, in this case, a replacement of the single numbers
by a general form is possible, so to get a demonstration of the statement. The te-
acher should then explain this is not possible: the examples of Fermat’s theorem
are not paradigmatic: it is not possible – at least as far as we know until now – to
deduce from them a general proof of this theorem, which, in fact, is independent
from the way in which such primes are decomposed into two squares15. Therefo-
re, a clear explanation of Fibonacci’s technique jointly with the replacement of the
general forms to the specific numbers used by Leonardo: i) will make it clear his
reasoning works in general; ii) will be a support to clarify the difference between a
paradigmatic and a not-paradigmatic example; iii) will be a support to distinguish
between a non-paradigmatic example and a rigorous proof. All these aspects are
fundamental for a pupil to catch the true logical foundations of mathematics as well
as the nature of this discipline. History of mathematics is, in this case, a precious
help for mathematics education.

B) Solutions of undetermined equations. Fibonacci provides one or more soluti-
ons to his equations. From a didactical point of view an interesting question arises:
did he supply all the possible solutions? The answer is negative: let us consider once
again the case a = 13; b = 11. Let us divide their sum by 4 and do not multiply
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by 2. We get the number 6, which offers the solution x = 7, y = 6, z = 5, which
does not exist in the Liber Quadratorum. Given a

b
= 2n+1

2n−1 , the least y who solves
the equation is y = n, with x = n + 1; z = n − 1 because (n+1)2−n2

n2−(n−1)2 = 2n+1
2n−1 = a

b
.

This number is simply obtained dividing a + b by 4, thence completely remaining
within Fibonacci’s methodology. These considerations have to induce the teacher
to clearly specify that, given an undetermined equation and, in general a mathe-
matical problem, there are four different questions: i) to proof if the equation has a
solution; ii) to show a solution of the equation; iii) to show possible other solutions
of the equation by an algorithm; iiii) to show that the found solutions are all the
solutions. These problems ought be connected: for example, it is clear that if one
finds a solution to an equation, the question i) is automatically solved, but they
are not necessarily connected. In the case of our equation, i. e., with a = 2n + 1;
b = 2n − 1, Fibonacci’s technique offers an infinite number of solutions, but we
cannot be sure they are all the solutions. Others could exist, which are not included
into Fibonacci’s algorithm. The difficulties involved in the answers to the questi-
ons i)-iiii) are, in general, quite different because by means of ingenious devices,
which, in some circumstances, arrive at resembling a theory, it is possible to offer a
solution or also an infinity of solutions. However, as I will explain more clearly in
the didactical considerations added to the next section, the answer to the problem
iiii) for this equation is connected to the general solution of all the undetermined
equations of second degree with two unknowns, problems which goes far beyond the
possibilities of a mathematician living in the 12th−13th century and far beyond the
programme of mathematics in a high school. This is the connection of which I was
speaking with regard to history of mathematics-mathematics education-advanced
mathematics: a problem, as that of Fibonacci, starts from history, allows us a series
of didactical considerations useful at high school level and is connected with an
aspect of advanced mathematics, whose complete solution was offered only in the
late 18th century. To follow this itinerary – though it can comprehend only a part
of the mathematical details – is quite instructive for the high schools’ pupils.

C) To play with numbers. Apart from more general considerations, the algorithm
by Fibonacci is useful for the pupils to learn to deal with numbers and numerical
forms. For example: given, in our equation a = 2n + 1, b = 2n−1, the teacher, after
having explained Fibonacci’s reasoning, could ask the pupils to find the numbers
of various forms: 6n, 7n, 8n,. . . which solve the equation. This is a useful exercise
because the ability to manipulate the numbers – which is so important in mathe-
matics – is progressively disappearing. Furthermore, to play with numbers inside an
algorithm might also be enjoyable for the pupils.

5.2. The equation x2−y2

y2−z2 = a
b the general solution

To deal with the general solutions, Fibonacci offers a series of arguments, which
can be summarized in the following reasoning: if it is possible to decompose a + b
or a multiple of this sum k(a + b) into a series of m + n consecutive addends, such
that the first m represent kb and the other n the same multiple ka of a, then the
problem is solved. For, let us consider the series of successive addends

h, h + 1, h + 2, . . ., h + m, h + m + 1, h + m + 2, . . ., h + m + n (16)
15 For detailed explanations on the 4n + 1 primes-theorem, see Bussotti, 2006.
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with

h + (h + 1) + (h + 2) + . . .(h + m) = kb

h + m + 1) + (h + m + 2) + . . . + (h + m + n) = ka

Then the three roots are z = 2h− 1, y = 2(h + m) + 1; x = 2(h + m + n) + 1
because:

(2h + 1)2 = (2h− 1)2 + 8h
[2(h + m + 1) + 1]2 = [2(h + m) + 1]2 + 8(h + m + 1)
(2h + 3)2 = (2h + 1)2 + 8(h + 1)
[2(h + m + 2) + 1]2 = [2(h + m + 1) + 1]2 + 8(h + m + 2)
· · · · · · · · · · · · · · ·
[2(h + m) + 1]2 = [2(h + m)− 1]2 + 8(h + m)
[2(h + m + n) + 1]2 = [2(h + m + n− 1) + 1]2 + 8(h + m + n)
[2(h + m) + 1]2 = (2h− 1)2 + 8(h + h + 1 + · · ·+ h + m)
[2(h + m + n) + 1]2 = [2(h + m) + 1]2 + 8(h + m + 1 + · · ·+ h + m + n)

Thus obtaining

x2 − y2

y2 − z2 = [2(h + m + n) + 1]2 − [2(h + m) + 1]2

[2(h + m) + 1]− (2h− 1)2 =

[2(h + m) + 1]2 + 8(h + m + 1 + . . . + h + m + n)− [2(h + m) + 1]2

(2h− 1)2 + 8(h + h + 1 + . . . + h + m)− (2h− 1)2 = a

b

The question is: is it always possible to find a decomposition as (16)? Fibonacci
does not offer a general answer, but a method by trials and errors, which let us
induce to think he was aware that such decomposition is always possible. However,
this is a purely historical problem16. What is very interesting from a didactical
standpoint is that the solutions to our equation are easy if the difference a− b is
an odd number or a number of the form 2n or 2n(2m + 1), n > 1. In these cases,
a direct numerical application of the technique of the consecutive addends offers
a solution. By the way, the numerical examples of Fibonacci belong to these two
cases. While, if a− b = 2(2m + 1), a different demonstration is necessary. Thence,
I will divide the argument into two cases; 1) a − b = (2n + 1) or a − b = 2n or
a− b = 2n(2m + 1), n > 1; 2) a− b = 2(2m + 1).

First case: a− b = (2n + 1) or a− b = 2n(2m + 1). Let first consider a− b =
(2n + 1). I offer the following canon, which is not exactly present – in this form –
in Fibonacci’s work, but strictly tied to his general approach:

a) Let us consider the difference a− b = d;

b) Multiply a by d and b by d;

c) Let us consider the sum a + b = s and the number ds = d(a + b) = da + db;

16 See Genocchi, 1855b, p. 348-353.
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d) Let us now decompose da and db in the sum of d consecutive addends, of
which a and b are the central addends. This is always possible because d is an
odd number. This construction ensures that in the decomposition of da and
db in consecutive addends, the places between b and a are exactly d = a− b,
hence we have a decomposition of d(a + b) in a series of consecutive addends
of which the first d represent da and the last d represent db. Therefore the
equation is solved.

An example will completely clarify the situation: let the equation x2−y2

y2−z2 = 14
5

be given. In this case a − b = 9, Thence we have to decompose 9 · 5 and 9 · 14
into nine consecutive addends, of which 5 and 14 are the central addends, thus
obtaining the required decomposition of ds = 9(5 + 14), which is

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9| + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18

The first nine addends are the decomposition of 9 · 5 , the last nine of 9 · 14.
Therefore, using the same symbols as those adopted for the general method, it is
h = 1; m = 8, n = 9. The three roots are hence z = 2h−1 = 1; y = 2(h+m)+1 =
19; x = 2(h + m + n) + 1 = 37. Indeed, it is

372 − 192

192 − 12 = 14
5

Second case: d = a − b = 2l (l > 1, because the cases n = 0, 1 have already
been dealt with). If d = 4, the problem is quite easy because a + b can, then, be
decomposed into four consecutive addends, of which the first two are equal to b
and the second tow are equal to a. If n > 2, it is always possible – as it is easy
to prove – to decompose 2l−2a and 2l−2b in a sum of 2l−1 consecutive addends,
in which the numbers a−1

2 , a+1
2 ; b−1

2 , b+1
2 are the central addends of the respective

sums.
Example: x2−y2

y2−z2 = 27
11 . It is 27 − 11 = 16 = 24, thence l = 4. It is hence

necessary to decompose 4 · 11 and 4 · 27 into 8 consecutive addends, in which the
central pairs are respectively(

b− 1
2 ,

b + 1
2

)
= (5, 6)

and (
a− 1

2 ,
a + 1

2

)
= (13, 14).

The decomposition is thence:

2 + 3 + 4 + |5 + 6|+ 7 + 8 + 9| |+ 10 + 11 + 12 + |13 + 14|+ 15 + 16 + 17 + 18

Where one vertical bar indicates the central pairs of every decomposition and
two vertical bars the step from the decomposition of 4 · 11 to that of 4 · 27 . Thus:
h = 2; m = 7, n = 8. The three roots are hence z = 2h−1 = 3; y = 2(h+m)+1 =
19; x = 2(h + m + n) + 1 = 35. We have:
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352 − 192

192 − 32 = 27
11

If d = a− b = 2l(2q + 1) (l > 1), the reasoning is analogous. The difference is
that 2l−1(2q +1)a and 2l−2(2q +1)b will de decomposed in the sum of 2l−1(2q +1)
consecutive addends. I provide an example: let us suppose that a

b = 17
5 . It is

a−b = 12 = 3 ·22, 2q+1 = 3, 2l−2 = 1. This means that 2l−2(2q+1)a = 3 ·17 = 51
and 2l−2(2q + 1)b = 3 · 5 = 15 will be decomposed into 6 consecutive addends,
whose central pairs are 8, 9 and 2, 3. The decomposition is hence

0 + 1 + |2 + 3|+ 4 + 5| |+ 6 + 7 + |8 + 9|+ 10 + 11
So that it is z = 1, y = 11, x = 23.
The particularity of this method is that we have always n = m + 1 because

the equimultiples of a and b, ka and kb, are decomposed into the same number of
addends, which is not necessarily true in the general conditions of solution.

This method cannot be applied if the difference a− b is of the form 2(2n + 1).
In this case, there is no particular device connected to a numerical canon: it is
necessary to offer a general solution. Fibonacci – as told above – offers a method
by trials and errors, which works because of the following considerations due to
Angelo Genocchi17: Let us suppose (see (16)) that

h, h + 1, h + 2, . . ., h + m, h + m + 1, h + m + 2, . . ., h + m + n

can be constructed so that kb is the sum of the first m terms and ka of the last n.
It is hence {

hm + m(m+1)
2 = kb

(h + m)n + n(n+1)
2 = ka

Therefore {
2k = mn(m+n)

am−bn

2h + 1 = 2bmn+bn2−am2

am−bn

Since a and b are coprime, the equation am−bn = 1 has solutions, for example
(m, n) = (b+1, a); (m, n) = (b, a−1) and so on. This means that the decomposition
(16) is possible and that hence our equation has always solutions. In particular z = 2h + 1 = 2bmn + bn2 − am2

y = 2(h + m) + 1 = bn2 + am2

x = 2(h + m + n) + 1 = 2amn− bn2 + am2

Didactical considerations.
Relations history of mathematics-mathematics education-advanced mathema-

tics.
1. The general solution of Fibonacci’s equation is an ideal example to detect

the relations between history of mathematics, mathematics education and advanced

17 Genocchi, 1855a, p. 186-189; Genocchi, 1855b, p. 348-353.
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mathematics: let us start from the case in which the difference a−b is an odd number
or a number, which can be divided by 4 or a bigger power of 2. I have offered a general
explanation, but, in this case, the method of the paradigmatic examples still works.
The explanation why the examples are paradigmatic is a little more complicated
than in the cases in which a−b = 1 or 2, but the teacher can offer it without resorting
to any general formula. It is enough to show the canon and to give an explanation in
words, which is quite intuitive. If the difference a− b is of the form 2(2n + 1) – and
only in this case – my canon cannot be applied. It is hence necessary to show, as
Genocchi did, that the series (16) can be anyway obtained by a general and formal
reasoning. This is instructive from an educative standpoint because the pupils have
a tangible example how much different can be the difficulties behind an apparently
similar problems. It is significant the teacher explains why my canon works when
the difference a − b is, for example, of the form 22(2n + 1) , but not when it is
2(2n+1). Nuances, but nuances are the essence of mathematics. And history plays an
important role in this context, because there is a historiographical counterpart to the
previous didactical question: Fibonacci, probably, knew the canon, but is it possible
to interpret, as Genocchi seems to do, his method by trials and errors as an evidence
of the fact the he knew the form of the general solution? This is a historiographical
question, to which it is not possible to answer in this paper. Notwithstanding, I cared
about pointing out the parallelism between some historiographical and educative
questions. The system by which Genocchi proves that a general solution exists is
tied to an appropriate symbolism, but the reasoning is, in itself, rather easy. The
same consideration holds if we look for other solutions to Fibonacci’s equations (as
Fibonacci himself highlights), however the request to find rigorously all the solutions
drives to a field, which is completely different, because no reasoning structured as
Genocchi’s is of help. It is possible to show that this problem can be reduced to the
integral solutions of the equation At2 + B = u2 (each letter indicates an integer),
whose general theory is due to Lagrange (see note 13) and drives to a sector of the
theory of numbers which, for a long period, belonged to advanced mathematics.
Obviously, it is not possible to deal with Lagrange’s solution in a high school, but it
is possible the students catch how a single problem can open the doors on interesting
educative perspectives, profound historical questions and subjects concerning high
mathematics.

2. To complete the canon when the difference a − b is an odd number or a
number of the form 2n(2m + 1), n > 1, it is necessary to add a consideration, which
can be interestingly exploit in an educative perspective: let us consider the equation
x2−y2

y2−z2 = 22
5 . Since 22− 5 = 17, which is an odd number, it is possible to decompose

17 · 5 and 17 · 22 into the sum of seventeen consecutive addends, of which 5 and
17 are the central addends. Nevertheless, here the canon works perfectly only if we
admit negative numbers. The decomposition is this:

−3− 2− 1− 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + |14 + 15+
16 + 17 + 18 + 19 + · · ·+ 30

Namely:

4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + |14 + 15 + 16 + 17 + 18 + 19 + · · ·+ 30

So that the roots are z = 7; y = 27, x = 61.
The question is from a historical point of view: could Fibonacci resort to a ca-

non, which, though elementary, works if one admits negative numbers? The answer
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should be negative because it is problematic to admit Fibonacci was able to ope-
rate with negative numbers, albeit Genocchi hypothesizes, in reference to another
problem dealt with by Fibonacci18, he was, or, at least, he had the idea of negative
numbers. Whatever the answer is, it is interesting to point out a particularity of
the relation history of mathematics-mathematics education: history of mathematics
is a fundamental support for mathematics education, even though the solutions to
a certain problem, presented by the teacher in the classroom, might not exactly
coincide with those likely offered in the historical period in which the problem was
posed. It is important that: 1) history provides stimulating material for mathema-
tics education; 2) the reference to history induces to address the subjects by means
of a more critical and, at the same time, intuitive approach, which is different from
those connoting most of handbooks; 3) the creativity of the pupils can be stimu-
lated, so that they learn to play with numbers (and this paper deals with such a
problem) and with the geometrical figures, the two ingredients, which, for centuries
and centuries, were at the basis of both advanced mathematics and mathematical
education and which nowadays risk to go lost for a more abstract approach based
on the structures and their laws.

6. Conclusion

I hope to have clarified – although by means of a sole example – why Enri-
ques’ opinion on the lack of a very board-line between history of mathematics,
mathematics education and advanced mathematics is plausible, even though not
necessarily true in any aspect. To support this thesis I have considered an example
which could be used at the third-fourth year in the high schools. Others could be
conceived for the university level.

Rather than to summarize the content of this paper, I prefer to suggest seven
lessons to develop in a classroom in order to present the material here proposed.

◦ Lesson 1 (after the explanation of the principle of mathematical induction):
Fibonacci’s method to prove that each square is the sum of a series of con-
secutive addends. Comparison between this method and the mathematical
induction. The importance of a good mathematical symbolism. The concept
of generality (a letter which indicate any number).

◦ Lesson 2: further examples of Fibonacci’s method and comparison with mo-
dern demonstrations by mathematical induction.

◦ Lesson 3 and 4: interdisciplinary lessons with the teachers of history and
philosophy (in the nations and schools where this discipline is taught). The
problem of infinity. How the relation of the man with mathematical infinity
has changed from Fibonacci’s time to nowadays. Relation with the infinity
in the history of philosophy. These subjects will not be – this is obvious –
completely analysed in two lessons. But two lessons are sufficient to offer
stimulating and interesting ideas to the pupils.

18 Genocchi, 1855b, p. 172-175.
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◦ Lesson 5: the equation x2−y2

y2−z2 = a
b , when a − b = 1 or 2. Relation between

paradigmatic examples and rigorous proofs. Relation between paradigmatic
examples and empirical examples.

◦ Lesson 6 and 7: x2−y2

y2−z2 = a
b in the other cases. The technique of the successive

addends. Its range of applicability. Extension of this technique when it is ne-
cessary to introduce negative numbers. Cases in which this technique cannot
be applied. The general algorithm. Very important: the teacher should point
out the limits inside which a method can be used. Each method has its ray
of applicability. Point out that apparently similar problems need different
procedures of solution.

It is easy to think of exercises connected to the methods dealt with here.
For example: to solve the equations

x2 − y2

y2 − z2 = 43
11 ; x2 − y2

y2 − z2 = 41
11 ; x2 − y2

y2 − z2 = 17
5 .
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