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Iterations of homographic functions and recurrence equations
involving a homographic function®

Abstract. The formulas for the m-th iterate (m € N) of an arbitrary homographic
function H are determined and the necessary and sufficient conditions for a solution of
the equation ym+1 = H(ym), m € N to be an infinite n-periodic sequence are given.
Based on the results from this paper one can easily determine some particular solutions

of the Babbage functional equation.

1. Preliminaries

The recurrence equations involving a homographic function where studied in
(Graham, Knuth, Patashnik, 2002). The authors stated that the only known ex-
amples of such equations possessing periodic solutions are

1
Ymt1 = 2isinmr + —, m e N,
Ym

where 7 is a rational number such that 0 < r < %
Various approaches to the sequences given by the recurrence equation

Ym+1 = H(ym)a meN, (1)

where H is a homographic function may be found in (KoZniewska, 1972; Levy,
Lessman, 1966; Uss, 1966; Wachniccy, 1966).

In this paper we prove formulas determining all solutions of (1). We also give
the necessary and sufficient conditions for a solution of (1) to be periodic.

We also determine some particular solutions of the Babbage functional equa-
tion

" (x) =x,  TEX, (2)

where m is an arbitrary fixed integer. Recall that ™ for n € N denotes the n-th
iterate of a function ¥: X — X, i.e. 9 = Idx and ¥™ = ¢ o ™! for integer
n>1.
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Some results concerning (2) may be found in (Kuczma, 1968). In particular
the following

THEOREM 1 (Kuczma, 1968, p. 291)
If ¢ is a meromorphic solution of equation (2), then

(z) = a'x+b
L4 Cdr+d

for some a',b',c,d € C.

THEOREM 2 (Kuczma, 1968, p. 291)
If L(z) = ax+ B, where a # 0, then ¢ satisfies (2)if and only if L= opo L does so.

THEOREM 3 (Kuczma, 1968, p. 291)
Let K 1=0,Ky=1, Kj =K1+ 0Km_2 form € Ny and let S(z) =~ + %,
where v,6 € C and 6 # 0, then

m . Kpx+ 0K,
S™(x) = K. 210K, form e Ny. (3)
Let .
H(z) := %, where a,b,c,d € C, ¢ #0, ad —bc # 0 (4)

In the sequel we assume that the domain of H is the set D defined as follows

D= ﬂ Dy,

meNL

where Dym denotes the domain of H™ and N := N\ {0}. We also set H? := Idp.
Let H: D — C be a function given by (4) and let

yo=2x0 and ymy1 = H(yn) foranaxzge D and meN.

Notice that
Ym = H™(x0) meN (5)

and xq, H(x9), H*(xq), ..., H" (20) € D.
Based on the theory of recurrence linear equations of order 2 with constant
coefficients (KoZniewska, 1972, p. 59) we get,

LEMMA 1
Let K 1 =0, Ko =1, K;, = YKyu—1 + 0Kp—o for m € Ny, § # 0 and let
A =~2+45. Then form € NU{-1},

1° Kp=m+1)(3)", if A=0,

7 K= 5 (5 - (55" a0



Iterations of homographic functions and recurrence equations [29]

where VA denotes one of the complex square roots of A.

A consequence of Lemma 1 is

LEMMA 2
IfK_l =0, Ky=1, K,,, = 7K1 + 0K p—2 form € Ny, 1) §£ 0, ’Y,(S € R and
A =~2% +45, then form € NU{—1},

1° Kyp=m+1)(3)", if A=0,

2 K, = k((%gﬁ)m“ - (v—zﬂ)m“) if A>0,

P Ky =(V=0)"cos 2, if y=0 and A <0,

4° K, = (V=A)"(cosmip + cot Y sinmap), if v #0 and A <0,

) L VA
where 1) is the principal value of an argument of the complexr number 3 +i¥5=.

2. Periodic solutions of the recurrence equation

DEFINITION 1
An infinite sequence (Ym )men s called periodic with period n (or n-periodic), where
neN, n>1, if Ymin = Ym for every m € N.

Consider equation (1) with the initial condition yg = x¢, where H: D — C is
a function defined by (4) and xzo € D. By (5) we get

LEMMA 3
Let H: D — C be a function defined by (4) and let n > 2 be a fized integer. Every
solution of (1) is periodic with period n if and only if

H" =1dp. (6)

Proof. Assume that for some integer n > 2 equation (6) holds, then by (5)
for every m € N we have

Ymin = H"™ " (x0) = H™(H" (x0)) = H™ (20) = Ym,

where yo = 9 € D. For the converse suppose that every solution of (1) is n-
periodic. Let zg € D, so H™(x9) € D for every m € N. Put y,, := H™ (),
m € N. The sequence (¥, )men satisfies (1), so it is n-periodic. Thus

H"(z0) = yn = yo = H(20) = .
Hence (6) holds.

Observe that Lemma 3 holds true if H is an arbitrary function with a proper
domain satisfying (2).
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THEOREM 4
Let S: D" — C be a function defined as S(x) = v — g, where v,6 € C, § # 0 and

D' := () Dgm, where Dgm denotes the domain of S™. Fvery sequence (Ym)meN
meNL

satisfying the following recurrence relation

Ym+1=S(ym), meN (7)
is 2-periodic if and only if v = 0.
Proof. In view of Lemma 3 it follows that every sequence (Y, )men satisfying
(7) is 2-periodic if and only if

ox
yr + 6

52(117) =7+ :IdD/(l’)7 rzeD.

Which is equivalent to the fact that v = 0.

Now we prove the following results.

THEOREM 5
Let S be as in Theorem 4, A =~y 4+ 45 and let n € N be such that n > 3.
(i) If every sequence (Ym)men satisfying (7) is n-periodic, then A # 0 and § =
Tooaw= for some k € {1,2,3,...,n—1}.

ii €1,2,3,...,n— an + an cos” == = —~*, then every
Ifke{1,2,3 1} and v + 46 # 0 and 46 cos® £x 72, th
sequence (Ym)men satisfying (7) is n-periodic.

Proof. To show (i) observe that by Lemma 3 we get
S"(x)==x, wzeD. (8)

By Theorem 3 and Lemma 1, (8) is equivalent to the following conditions

Knl'+5Kn,1 Kn,1$+5Kn,2 ,
-z =0, z€D,
[(n—l']j + 5Kn—2 I(’n,—laj + 6Kn—2
YKy 12+ 0K, ox + 0K, 1 — Kn_ll‘Q — 0K, sz
Kn—lx + 5Kn—2
K, (=2 +~yx +9)
anlx + 6Kn72

Kn71:07
v+\/5)”_ (7—\/Z>”
2 B 2 ’

=0, zecD,

=0, zeD,

A #0 and (
A#£0 and (y+VA)" = (y—VA)",

2 2
A#0andIke{l,....n—1}: y+VA = (y—ﬂ)(cosff—i—isinff). (9)
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Now notice that

v+ VA = (’y—\/Z)(coszi7T —i—isian;r)
is equivalent to the following conditions

2 2 2 2
\/Z(l—i-cos]:f—i—isinl:f> =7<cosfl7r+isink7r—1),

n
k k k k k k

2\/ACOS7T<COS7T +isin7r) —2fysin7r<icos7r sinﬁ),
n n n n n n

k k k k k k
QVACOSW(COSW +isin W) = 2’yisin77<cos7T —|—isin7r>. (10)
n n n

n n n

Thus condition (9) is equivalent to
k k
A#0Oand Ike{l,...,n—1} VA cos — :'yisin—ﬂ,
n n
k
A#0OQand I ke{l,...,n—1} \/A:'yitan—ﬁ,
n

k
A#Oandﬂke{l,...,n—l}A:—'yztan2—7r,
n

_ A2
A#0and3ke{l,...,n—1}§=—",
4 cos? EX

which completes the proof of (i).
For the implication (ii) consider two cases:

a. n is an even number and k = 3,
b. n is an even number and k£ # % or n is odd and k € {1,2,3,...,n — 1}.

In the case a, we get v = 0 and according to Theorem 4 every sequence satisfying
(7) is 2-periodic and hence n-periodic.
For the case b, notice that for every k € {1,2,3,...,n—1}, cos kﬂ—“ = 0 we have

A#0andé = 40(;7722,& which yields A = —~2 tan? %’T Denote by v/A the number
~itan %”, thus v/A cos %’T = ~isin %” which is equivalent to (10). Now reversing
the reasoning from the case (i) — from condition (10) to (8) (without condition
(9)) — finishes the proof.

The results obtained above will be now applied to examine the sequences
defined by (1).

THEOREM 6
If H: D — C is a function given by (4) and (K_1, Ko, K1, ...) is a sequence defined
in Theorem 3 for which v =a+d and 6 = bc — ad, then

1 cKpx+dK, +0K,,_1

H™(z) = =
@) = K r Ay 1 1 0K,

- g forme Ny, L(z)e D. (11)
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Proof. Lety=a+d,§=bc—ad, L(x)= %—% and S(z) = (L 'oHoL)(x),
L(z) € D. We have

L™Y(z) = cx +d,

ax + bc — ad
HolL)(z) = — 2= — "¢
(Ho L)) = 2o
S)= (L oHoL)a)=a+d+ 2oy i 0

for L(x) € D, where 6 # 0. By Theorem 3 we obtain

Kox+0K,,_1
Km—lx + 5Km—2

S™(x) = forme Ny, L(z) € D.

Now observe that
S™=L"1'oH™oL formeN,,

thus
H™=LoS™oL™ ' formeN,,

which gives (11).
Lemma 3 and Theorem 2 yield

THEOREM 7
Let H: D — C be a function defined by (4), L(z) = £—42, S(z) = (LYo HoL)(x),

c c’

L(z) € D and let n > 2 be a fixed integer. Then every solution of (1) is n-periodic
if and only if
S™ =1dp.

3. Examples

From the proof of Theorem 5 it follows that condition

k
72 +456#0 and ke {l,...,n—1} /2 +4 = —yitan — (12)
n

is equivalent to the fact that every sequence (Y.,)men satisfying equation

n 0
Ym+1 =7 T —
" Um
or equation
_aym +0b
Ym+1 = CYrm +d7

where a + d = v and bc — ad # 0, is n-periodic with n > 3.
Moreover, it is easy to find numbers v, ¢ satisfying (12) and a, b, ¢, d - solutions
of the system a + d = v, bc — ad # 0. Namely, for n =3, v =1, § = —1 (12) is
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fulfilled and numbers a = 2, b = —3, ¢ = 1, d = —1 satisfy the system a +d =1,

bc — ad = —1, thus in view of Theorem 5 and Lemma 3 the following functions
-1 2z — 3
Sx)=14+— H(x) =
@) =1+—, H@)=——

fulfil the Babbage equation ©?(z) = x (which can be directly checked).

Now let n =4, for v =2, § = —2 (12) holds true. Let a =3,b= -5, c=1
and d = —1, then a +d = 2, bc — ad = —2. Similarly as above we get that the
mappings

-2 3z —5
=2+ "2 @)=

satisfy equation ¢*(z) = .
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