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Abstract. This study presents three alternative proofs of the Banach con-
traction principle (BCP). These proofs are derived from proofs of theorems
that generalized the BCP, established in the existing studies. By simplifying
the proofs of the generalized theorems, the alternative proofs of the BCP are
obtained. The author thinks that studying the alternative proofs provided
in this article helps students understand the general theorems easily.

1. Introduction

The Banach contraction principle (BCP) is as follows:

Theorem 1 (Banach,1922)
Let X be a complete metric space and let T : X → X be an r-contraction, that is,
there exists r ∈ (0, 1) such that

d (Tx, Ty) ≤ rd (x, y)

for all x, y ∈ X. Then, T has a unique fixed point x∗ = Tx∗ and {T nx} converges
to x∗ for any x ∈ X.

For a standard proof of this theorem, refer to Theorem 9.23 in Rudin (Rudin,
1964), for instance.

The BCP is a very useful tool in various fields of mathematics and other
applied mathematical sciences. It is applicable to the proof of the inverse function
theorem (see Theorem 9.24 in Rudin (1964)). Barcz (2020) used the BCP to
approximate the golden number (see also Barcz (2019)). It is also effective to show
the existence of the solution to the variational inequality problems (see Section 4
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in Kondo (2023)). Due to its usefulness, the BCP has been extended to various
directions.

The purpose of this article is to provide three alternative proofs of the BCP.
The proofs are derived from those of generalized theorems of the BCP. Gener-
alization of the BCP using a φ-contraction is found in Boyd and Wong (1969)
and others (Barcz, 1983; Berinde, 2007; Rus, 2001). Referring to Theorem 2.7 in
Berinde (2007), the author simplifies the proof and presents the alternative proof
1 presented in the next section (Section 2). Similarly, from a proof in Wardowski
(2012), the alternative proof 2 is deduced; (see Section 3). The alternative proof
3 in Section 4 is a by-product from the work of Ćirić (1974). The author thinks
that studying these alternative proofs, which are relatively reader-friendly, would
help students understand the works with φ-contraction and articles by Wardowski
(2012) and Ćirić (1974).

2. Alternative proof 1

This section presents the first alternative proof of the BCP (Theorem 1). The
author obtained the proof by simplifying Theorem 2.7 from Berinde (2007). We
start with the following lemma:

Lemma 1 Let X be a metric space and let T : X → X be an r-contraction, where
0 < r < 1. Let x ∈ X and ε > 0 that satisfy

d (x, Tx) ≤ (1 − r) ε. (2.1)

Then, the ε-ball Bε (x) ≡ {z ∈ X : d (x, z) < ε} around x is T -invariant, that is,
y ∈ Bε (x) =⇒ Ty ∈ Bε (x).

Proof. Let y ∈ Bε (x). We aim to show that Ty ∈ Bε (x). Using conditions
(2.1) and d (x, y) < ε, we obtain

d (x, Ty) ≤ d (x, Tx) + d (Tx, Ty)
≤ (1 − r) ε + rd (x, y)
< (1 − r) ε + rε = ε.

This completes the proof. □

Now, we present the first alternative proof of the BCP:

Alternative proof 1. Let x ∈ X and define xn = T nx for all n ∈ N ∪ {0}.
Note that x0 = x. Observe that {xn} is a Cauchy sequence. Indeed, we have the
following:

d (xn, xn+1) = d (Txn−1, Txn) (2.2)
≤ rd (xn−1, xn) ≤ r2d (xn−2, xn−1)
≤ · · · ≤ rnd (x0, x1) → 0 as n → ∞.
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Choose ε > 0 arbitrarily and define δ = (1 − r) ε/2 > 0. From (2.2), for δ > 0,
there exists n0 ∈ N such that

d (xn0 , xn0+1) = d (xn0 , Txn0) < δ = (1 − r) ε

2 .

According to Lemma 1, B ε
2

(xn0) is T -invariant. As xn0 ∈ B ε
2

(xn0), we have that
Txn0 = xn0+1 ∈ B ε

2
(xn0). Similarly,

{xn0 , xn0+1, xn0+2, · · · } ⊂ B ε
2

(xn0) .

Let m, n ∈ N with m, n ≥ n0. Then, xm, xn ∈ B ε
2

(xn0) and we obtain

d (xm, xn) ≤ d (xm, xn0) + d (xn0 , xn)

<
ε

2 + ε

2 = ε.

We have demonstrated that

∀ε > 0, ∃n0 ∈ N such that m, n ≥ n0 =⇒ d (xm, xn) < ε.

This indicates that {xn} is a Cauchy sequence, as claimed.
As X is complete, there exists x∗ ∈ X such that xn → x∗. We verify that

x∗ = Tx∗. As T is continuous, it follows that

Tx∗ = T
(

lim
n→∞

xn

)
= lim

n→∞
Txn = lim

n→∞
xn+1 = x∗.

Therefore, T has a fixed point.
We prove the uniqueness. Suppose that u = Tu and v = Tv. It holds that

d (u, v) = d (Tu, Tv) ≤ rd (u, v) .

This implies that (1 − r) d (u, v) ≤ 0. As 0 < r < 1, we obtain u = v. This
completes the proof. □

3. Alternative proof 2

In this section, we provide the second alternative proof of the BCP (Theorem
1). Remind the result

∞∑
n=1

1
ns

{
= ∞ if s ≤ 1;
∈ R if s > 1; (3.1)

from standard calculus (Theorem 3.28 in Rudin (1964)), for instance). Conse-
quently, if s > 1, then

∞∑
k=n

1
ks

=
∞∑

k=1

1
ks

−
n−1∑
k=1

1
ks

→ 0

as n → ∞.
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Alternative proof 2. Choose x ∈ X arbitrarily and define xn = T nx for all
n ∈ N ∪ {0}. Note that x0 = x. We prove that {xn} is a Cauchy sequence. If
xn = xn+1 for some n ∈ N∪{0}, then it results that xn+2 = Txn+1 = Txn = xn+1.
Similarly, it holds that

xn = xn+1 = xn+2 = xn+3 = · · · ,

which implies that {xn} is a Cauchy sequence. (Furthermore, xn is a fixed point
of T as xn = xn+1 = Txn.) Thus, without loss of generality, suppose that xn ̸=
xn+1 for all n ∈ N ∪ {0}. Consequently, it holds that d (xn, xn+1) > 0 and
log d (xn, xn+1) (∈ R) can be considered.

It follows that

d (xn, xn+1) = d (Txn−1, Txn) ≤ rd (xn−1, xn) .

By taking the logarithm value, we obtain the following:

log d (xn, xn+1) ≤ log r + log d (xn−1, xn) (3.2)
≤ 2 log r + log d (xn−2, xn−1)
≤ · · ·
≤ n log r + log d (x0, x1) .

As 0 < r < 1, it holds that log r < 0. Therefore, the rightmost side diverges to
−∞ as n tends to infinity. According to (3.2), we obtain log d (xn, xn+1) → −∞,
equivalently,

d (xn, xn+1) → 0. (3.3)

The inequality (3.2) also implies that√
d (xn, xn+1) [log d (xn, xn+1) − log d (x0, x1)] (3.4)

≤
√

d (xn, xn+1)n log r < 0.

From (3.3), it holds that
√

d (xn, xn+1) log d (xn, xn+1) → 0. Using the squeeze
theorem, we have from (3.4) that

√
d (xn, xn+1)n → 0 in the limit as n → ∞.

As
√

d (xn, xn+1)n → 0, there exists n0 ∈ N such that

n ≥ n0 =⇒
√

d (xn, xn+1)n < 1.

Consequently, for n ≥ n0, the following inequality holds true:

d (xn, xn+1) <
1
n2 .

Let m, n ∈ N with m > n ≥ n0. According to (3.1), we have

d (xn, xm) ≤ d (xn, xn+1) + d (xn+1, xn+2) + · · · + d (xm−1, xm)

≤
∞∑

k=n

1
k2 < ∞.
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As
∑∞

k=n
1

k2 → 0 as n → ∞, we obtain d (xn, xm) → 0 as m, n → ∞. This
indicates that {xn} is a Cauchy sequence. The rest of the proof is same as the
corresponding part of the alternative proof 1. □

It is noteworthy that the log-function F (x) = log x has the following properties:

(F1) F is strictly increasing;
(F2) x → 0 ⇐⇒ F (x) → −∞;
(F3) For s ∈ (0, 1) , xsF (x) → 0 as x → 0.

As already mentioned in the Introduction, the second alternative proof is deduced
from a proof in Wardowski (2012). Wardowski (2012) called the mapping F :
(0, ∞) → R an F -mapping if it satisfies (F1)–(F3), and generalized the BCP using
the concept F -mapping. For further extensions, see Wardowski and Dung (2014)
and a survey article by Karapinar et al. (2020).

4. Alternative proof 3

To present the third alternative proof of the BCP (Theorem 1), we prepare a
notation. Let x ∈ X, T : X → X, and n ∈ N. Define

M (x, n) = max
{

d (x, Tx) , d
(
x, T 2x

)
, · · · , d (x, T nx)

}
≥ 0.

For all x ∈ X and n ∈ N, it holds that

• M (x, n) = d
(
x, T kx

)
for some k ∈ {1, · · · , n} ;

• d
(
x, T kx

)
≤ M (x, n) for all k ∈ {1, · · · , n} .

Using these facts, we obtain the following lemma:

Lemma 2 Let X be a metric space and let T : X → X be an r-contraction, where
0 < r < 1. Then, it holds that

M (x, n) ≤ 1
1 − r

d (x, Tx)

for any x ∈ X and n ∈ N.

Proof. It follows that

M (x, n) = max
{

d (x, Tx) , d
(
x, T 2x

)
, · · · , d (x, T nx)

}
= d

(
x, T kx

)
for some k ∈ {1, · · · , n}

≤ d (x, Tx) + d
(
Tx, T kx

)
≤ d (x, Tx) + rd

(
x, T k−1x

)
≤ d (x, Tx) + rM (x, n) .

This yields (1 − r) M (x, n) ≤ d (x, Tx). Thus, we obtain the desired result. □
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Now, we can establish the third alternative proof of the BCP:

Alternative proof 3. Select x ∈ X arbitrarily and define xn = T nx for all
n ∈ N ∪ {0}. Note that x0 = x. We demonstrate that {xn} is a Cauchy sequence.
Let m, n ∈ N with m > n. It follows that

d (xn, xm) = d
(
xn, T m−nxn

)
≤ M (xn, m − n) (4.1)
= d

(
xn, T kxn

)
for some k ∈ {1, 2, · · · , m − n}

= d
(
Txn−1, T k+1xn−1

)
≤ rd

(
xn−1, T kxn−1

)
≤ rM (xn−1, m − n) . (4.2)

Using (4.1), (4.2), and Lemma 2, we have

d (xn, xm) ≤ M (xn, m − n) ≤ rM (xn−1, m − n)
≤ r2M (xn−2, m − n) ≤ · · · ≤ rnM (x, m − n)

≤ rn

1 − r
d (x, Tx) → 0

as m, n → ∞. This demonstrates that {xn} is a Cauchy sequence. The rest of the
proof is same as the corresponding part of the alternative proof 1. □

The author obtained the above proof by scrutinizing a proof in Ćirić (1974),
which may appear challenging due to the general type of contraction mapping it
addresses. After studying the alternative proof in this section, one may understand
the proof in Ćirić (1974) relatively easily.
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