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The identity 73n + 73n+1 = (2 · 7n)3 and its
generalizations∗∗∗

Abstract. Starting with the identity 73n+73n+1 = (2·7n)3 and its sibling, we
prove that for any positive integer m, the Diophantine equation xn +xn+k =
zm has infinitely many solutions in nonzero integers x, z, n and k. We show
that in case k > 1 the solutions come from Catalan’s Conjecture. We also
solve three similar Diophantine equations.

1. Introduction

The role of generalization in mathematics is immense - start with simple prob-
lem and try to find a greater picture of it. During the course conducted by the
author, a student presented part of the book by Nowicki (Nowicki, 2012). On one
of the slides the following identities were presented (they are labeled as Fact 1.7.4
and Fact 1.7.5 in the book):

73n + 73n+1 = (2 · 7n)3, (1.1)
263n + 263n+1 = (3 · 26n)3. (1.2)

These identities appear as the solution to the following problem: find the number
whose two consecutive powers add up to the cube. One of the other challenges
given to the student was to think of other possible identities of this kind.

The student could not find further solutions, but the author noticed that
identities (1.1) and (1.2) follow a specific pattern, where the base numbers are of
the form t3 −1 (with integer t). This lead to more solutions of the general equation

xn + xn+1 = zm, (1.3)
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and eventually, to a complete solution of that equation. Equation (1.3) is a special
case of far more general Diophantine problem

xa + yb = zc. (1.4)

Special cases of equation (1.4) involve many famous problems in number theory,
including Fermat’s Last Theorem or Catalan’s Conjecture.

The famous Catalan’s Conjecture posed in 1844 stated that there are no two
consecutive perfect powers other than 8 and 9. In the language of Diophantine
equations the conjecture can be formulated as follows: the equation

xa − yb = 1

with unknown x, z, a and b, all at least 2, has only one solution in positive integers
(x, y, a, b) = (3, 2, 2, 3). The conjecture has been proven positive by Mihăilescu
with the help of cyclotomic units (Mihăilescu, 2004).

Identities (1.1) and (1.2) solve the equation (1.4) with c = 3 and a = 3n, b =
3n+1 and inspire us to search for the solutions of (1.4) under reasonable constrains.
More specifically, we consider the following form of the equation:

xn + xn+k = zm, (1.5)

where x, z are integers, n ≥ 0 and k ≥ 0. We also consider a few variations of (1.5),
such as

xn+k − xn = zm, (1.6)
xn + 2xn+1 = zm, (1.7)

xn + xn+1 + xn+2 = z3. (1.8)

Note that a variety of similar equations are considered in the literature, see (Powell,
et al, 1978) for the solution of xn +1 = yn+1 or (Nowicki, 2012) and the references
therein.

We will use the following immediate observation throughout the article.

Lemma 1.1
If a is an integer and n, k are positive integers, then we have

gcd(an, ak + 1) = 1.

Proof. Let p be a prime number dividing an. Then ak + 1 ≡ 1 (mod p) and
thus gcd(an, ak + 1) = 1.

2. The equation xn + xn+k = zm

To demonstrate our approach, we start by solving the equation (1.5).
Let us briefly describe some of the simple cases. We start with k = 0 and

n = 0.
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If k = 0, then the equation (1.5) becomes

2xn = zm,

which implies z = m
√

2x
n
m . The remaining consideration depends on m.

In the first case we take m = 1, then it is easy to see that (x, z, n) = (t, 2tℓ, ℓ)
with t ∈ Z and ℓ ∈ N is the solution to our simplified problem.

Let m > 1, then z = m
√

2 · x
n
m has to be an integer, which implies x = 2

p
q for

some integers p and q with gcd(p, q) = 1. This implies

z = 2
q+pn

mq

is an integer, so mq|q + pn and therefore, q|n. Thus, we can write

z = 2
1+pn′

m

for some positive integer n′. The fraction 1+pn′

m , for fixed m, is an integer for
infinitely many pairs (p, n′). To find any such pair, fix ℓ ≥ 1 and write mℓ − 1 =
p · n′. Therefore, for any m > 1 we can write the complete set of solutions:

(x, z, n) =
(
2p, 2ℓ, n′) , with mℓ − 1 = p · n′.

For example, if we take m = 11 and ℓ = 3, then

(x, z, n) =
(

22c

, 23, 25−c
)

, c = 0, . . . , 5.

We now move to the case n = 0. Here, the equation becomes

1 + xk = ym

which is, for k, m > 1, equivalent to Catalan’s problem. In the case k = 1 and
fixed m we have

1 + x = zm

and the solution is (x, z) = (tm −1, t) for t ∈ Z. Similarly we solve the case m = 1.
These are the simple solutions and in our further consideration are skipped.

To solve the equation (1.5) in general we go back to identities (1.1) and (1.2)
again and at first we solve the case k = 1, that is, we solve equation (1.3). A
careful consideration of these leads to the following.

Theorem 2.1
The solution of (1.3) with fixed m, n > 0 and k = 1 is

(x, z, n) = (tm − 1, t(tm − 1)ℓ, mℓ), (2.1)

where t ∈ Z, ℓ ∈ N.
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Proof. We check that (2.1) satisfies (1.3). Indeed, we have

xn + xn+1 = (tm − 1)mℓ + (tm − 1)mℓ+1

= (tm − 1)mℓtm

= (t(tm − 1)ℓ)m.

Suppose now that (x, z, n) is a solution to (1.3). We have

zm = xn + xn+1 = xn(1 + x)

and since gcd(x, x + 1) = 1, we find s, t ∈ Z with gcd(s, t) = 1 and
zm = smtm,

sm = xn,

tm = 1 + x.

It follows from the third equation that x = tm − 1, implying sm = (tm − 1)n.
Excluding trivial case x = 1 (which leads to z = 2 only if m = 1, so one of the
simple solutions) we see that s ≥ t and so sm > tm − 1, which gives

s = (tm − 1) n
m .

If n
m /∈ Z, then tm − 1 = uq for some u ∈ Z and q ∈ N so that q · n

m is an
integer. But, using Catalan’s conjecture, this is possible only when u = m = 2
and t = q = 3, implying n is even. So, let n = 2ℓ and thus,

t = 3, s = 3ℓ, x = 3, z = 4 · 32ℓ.

Consider the case n
m ∈ Z, so n = m · ℓ for some integer ℓ ∈ N. It follows that

s = (tm − 1)ℓ and thus

x = tm − 1, z = t · (tm − 1)ℓ,

which by the initial reasoning gives a valid solution for any t and ℓ, concluding the
theorem.

We note that the solution (x, z, n) = (3, 4 · 32ℓ, 2ℓ) (which comes from the case
m ∤ n) is in fact the solution described by t = m = 2 in equation (2.1), which
clarifies why such a solution is not included in the statement of the theorem.

Remark 2.2 Notice that the solutions (2.1) are generated from the solution cor-
responding to ℓ = 1 in the following sense: if (x, z, n) solves (1.3), then so does
(x, z ·x, n+m). This motivates us to call the solutions for ℓ = 1 primitive solutions.

Example 2.3 We present the primitive solutions for selected m in Table 1. Notice
the appearance of identities (1.1) again and (1.2) in the third row of the table.

Take for example the primitive solution

73 + 74 = 143.



The identity 73n + 73n+1 = (2 · 7n)3 and its generalizations [9]

Table 1: General form of solution for 2 ≤ m ≤ 5 and the primitive solutions.
m solution example solutions (ℓ = 1)

2 (t2 − 1, t(t2 − 1)ℓ, 2ℓ) 32 + 33 = 62 82 + 83 = 242 152 + 153 = 602

3 (t3 − 1, t(t3 − 1)ℓ, 3ℓ) 73 + 74 = 143 263 + 264 = 783 633 + 634 = 2523

4 (t4 − 1, t(t4 − 1)ℓ, 4ℓ) 154 + 155 = 304 804 + 805 = 2404 2554 + 2555 = 10204

5 (t5 − 1, t(t5 − 1)ℓ, 5ℓ) 315 + 316 = 625 2425 + 2426 = 7265 10235 + 10236 = 40925

Multiplying both sides by 73, 76, 79 and so on we obtain all solutions corresponding
to the case m = 3 and t = 2. Notice also that if we didive the identity by 73, we
obtain 70 + 71 = 23 - a solution corresponding to the simple case n = 0 described
in the beginning of this section.

Theorem 2.4
The solutions of (1.5) with k > 1, m > 1 and x, z ̸= 0 are

(x, z, n, k, m) = (2, 3 · 2ℓ, 2ℓ, 3, 2). (2.2)

Proof. Suppose (x, z, n, k, m) solves (1.5). Then

zm = xn(1 + xk)

and since gcd(xn, 1+xk) = 1, we have 1+xk = tm for some t|z. The only solution
to this equation is (x, t, k, m) = (2, 3, 3, 2) and thus (1.5) becomes

2n · 9 = 9 · y′2

for some y′ ∈ Z. It follows that y′ = 2 ℓ′
2 for some ℓ′ ∈ N. Taking ℓ′ = 2ℓ for ℓ ∈ Z

we see the general solution to (1.5) is of the desired form.
Substituting (2.2) to (1.5) yields the identity

22ℓ + 22ℓ+3 = (3 · 2ℓ)2

and completes the proof.

2.1. The equation xn+k − xn = zm

We consider the equation (1.6). The following two results are derived in the
same way Theorem 2.1 and Theorem 2.4 and thus the details are omitted.

Theorem 2.5
The solution of (1.6) with fixed m, n > 0 and k = 1 is

(x, z, n) = (tm + 1, t(tm + 1)ℓ, mℓ),

where t ∈ Z, ℓ ∈ N.

Theorem 2.6
The solutions of (1.6) with k > 1, m > 1 and x, z ̸= 0 are

(x, z, n, k, m) = (3, 2 · 3ℓ, 3ℓ, 2, 3).
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3. Companion equations

In this section we partially solve equation (1.7) and completely solve equa-
tion (1.8). The partial solution comes from the coefficient 2 appearing in the
equation, which increases the complexity of the equation significantly. In fact, the
complete solution of such an equation leads to yet another very general Diophan-
tine equation. We refer the reader to the details below.

3.1. The equation xn + 2xn+1 = zm

The equation (1.7), surprisingly, is much more difficult to solve and not all
solutions can be explicitly written down.

We begin the solution by noting that

zm = xn(1 + 2x)

and since gcd(1 + 2x, xn) = 1, we obtain that there are co-prime integers s, t such
that 

zm = smtm,

sm = xn,

tm = 1 + 2x.

It follows from the third one that

x = tm − 1
2

and thus t is odd, so t = 2u + 1 for some integer u.
We now consider several cases. First, assume that n > 1 and m|n. Then

n = m · ℓ and it is easy to give the solution

(x, z, n) =
(

(2u + 1)m − 1
2 , (2u + 1)

(
(2u + 1)m − 1

2

)ℓ

, mℓ

)
,

valid for each integer u and ℓ ≥ 1.
Suppose now that n = 1, which translates the initial equation to

x(1 + 2x) = zm.

Consider substitution tm = 1 + 2x again and notice that

x = tm − 1
2 = sm.

This is equivalent to
tm − 2sm = 1, (3.1)

which in case m = 2 is Pell equation. Using standard algorithm of solving such
equations we find that

|t| = (3 + 2
√

2)k + (3 − 2
√

2)k

2 , |s| = (3 + 2
√

2)k − (3 − 2
√

2)k

2
√

2
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and k ∈ N defines all integer solutions. Indeed, it is easy to check that if

tk = (3 + 2
√

2)k + (3 − 2
√

2)k

2 ,

then tk is odd for all k and thus tm
k −1

2 is an integer. (for example, taking k = 6
we have t6 = 19601. Then we get x = 192 099 600 and z = 271 669 860).

In case m ≥ 3 equation (3.1) is a Thue equation. It follows from the result
of Bennett (Bennett, 2001, Theorem 1.1) that in such case we have at most one
solution in positive integers for each m. Since the proof is not constructive, it is
not viable to provide a direct set of solutions.

Suppose that m does not divide n. Then, following similar part of the proof
of Theorem 2.1 we get

s =
(

tm − 1
2

) n
m

and thus tm−1
2 = up for some u ∈ Z and positive integer p. This translates to a

very general equation
2up + 1 = tm. (3.2)

As far as Author is concerned, this equation has not been studied in the whole
generality. There are of course trivial cases, such as m = p = 2 which reduce to
Pell equation. On the other side, we were able to find many numerical solutions
to that equation, here we showcase a few of them with varying m. For m ≥ 5 we
present the solution with lowest possible pair (p, u) in the lexicographic order.

(u, p, m, t) = (2, 2, 2, 3),
(u, p, m, t) = (12, 2, 2, 17),
(u, p, m, t) = (70, 2, 2, 99),
(u, p, m, t) = (82, 15, 2, 319241167726353),
(u, p, m, t) = (576, 15, 3, 79883254312781),
(u, p, m, t) = (11, 2, 5, 3),
(u, p, m, t) = (9062, 23, 7, 11099716939425),
(u, p, m, t) = (7997, 27, 9, 552368705167),
(u, p, m, t) = (9720, 35, 11, 5192725770939),
(u, p, m, t) = (7761, 42, 13, 3895673179533),
(u, p, m, t) = (4381, 51, 17, 143429207143).

We also note that there are many solutions such that p
m is an integer, for example

(u, p, m, t) = (1989, 12, 3, 19718890002291),
(u, p, m, t) = (341, 20, 4, 5483140746069),
(u, p, m, t) = (640, 35, 7, 118550708827139),
(u, p, m, t) = (544, 55, 11, 50741214944823),
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and many more. In order to keep the difficulty of the paper on equal level, we do
not delve into the problem of solving equation (3.2) (even in special cases) and
thus we finish our consideration here.

3.2. The equation xn + xn+1 + xn+2 = z3

Let us consider the equation (1.8). Then,

xn(1 + x + x2) = z3

and since gcd(1 + x + x2, x) = gcd(1 + x2, x) = 1, we know that

1 + x + x2 = y3 (3.3)

for some integer y. The equation (3.3) can be seen as

(2x + 1)2 + 3 = 4y3

and substituting X = 2x + 1, Y = y yields

X2 + 3 = 4Y 3.

This equation has only two pairs of solutions (see (Tzanakis, 1984)):

(X, Y ) = (±1, 1), (X, Y ) = (±37, 7).

Thus there are four solutions to (3.3):

(x, y) = (−1, 1), (x, y) = (0, 1), (x, y) = (−19, 7), (x, y) = (18, 7).

Let us consider all four cases.

• If (x, y) = (−1, 1), then (−1)n = z3. Thus if n is odd, z = 1 and if n is even,
z = −1.

• If (x, y) = (0, 1), then we obtain only trivial solution x = z = 0.

• If (x, y) = (−19, 7), then the equation becomes

(−19)n · 343 = 343 · z′3.

Thus z′ = (−19) n
3 and 3|n. This implies that

(x, z, n) = (−19, 7 · (−19)ℓ, 3ℓ)

solves (1.8) provided ℓ ∈ N, that is, we have the following identity

(−19)3ℓ + (−19)3ℓ+1 + (−19)3ℓ+2 =
(
7 · (−19)ℓ

)3
.

• The case (x, y) = (18, 7) is similar and gives

(x, z, n) = (18, 7 · 18ℓ, 3ℓ)

for some ℓ ∈ N, giving the identity

183ℓ + 183ℓ+1 + 183ℓ+2 =
(
7 · 18ℓ

)3
.
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We can summarize the above with the following result.

Theorem 3.1
The complete solution to the equation (1.8) is described by the following cases (in
each one we consider ℓ ∈ N):

1. (x, z, n) = (−1, (−1)ℓ, ℓ),

2. (x, z, n) = (0, 0, ℓ),

3. (x, z, n) = (−19, 7 · (−19)ℓ, 3ℓ),

4. (x, z, n) = (18, 7 · 18ℓ, 3ℓ).
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