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Abstract. The paper presents some theorems about fixed points of non-
expansive mappings of certain convex subsets of Banach spaces, as well as
examples of applications of these theorems, among others, to justify the
correctness of the square roots approximation process in Heron’s algorithm
(from the 1st century AD).

1. Introduction

The aim of the paper is to present some theorems about fixed points of non-
expansive mappings, in particular to discuss the fixed point theorems about con-
tractive mappings of certain one-dimensional and multidimensional sets. Three
examples of the application of theorems of this type are also included in it. These
examples illustrate how certain problems can be approached from the perspective
of fixed point theory. In one of them there is a justification for the correctness
of the approximation process of square roots in Heron’s algorithm. We also dis-
cuss various methods of approximating square roots. Previous (Barcz, 2021; Barcz,
2020; Barcz, 2019) papers have presented applications of the Edelstein and Banach
fixed point theorems to the golden number φ approximation. It can be seen that
the presented work is a development of (Barcz, 2021; Barcz, 2020; Barcz, 2019).

2. Introduction to some fixed point theorems of non-expansive
mappings

We will introduce the definitions of the concepts that will be used latter and
give a useful fact about the relationship between the so-called ε-fixed point and
the fixed point.

∗2010 Mathematics Subject Classification: 54H25, 41H99
Keywords and phrases: lfixed point theorems, approximation of square roots, Heron’s algo-

rithm, golden number approximation



[6] Eugeniusz Barcz

Let (X, d) be a metric space and let f : X → X.
A fixed point of the mapping f : X → X is called a point x̂ ∈ X such that
f (x̂) = x̂. We say that the mapping f satisfies the Lipschitz condition on X if
there is a constant k ⩾ 0 such that the inequality

d (f(x), f(y)) ⩽ kd(x, y)

holds for all x, y ∈ X; the smallest such k is called the Lipschitz constant k(f) of
f . If k(f) < 1, the mapping f is called the contraction; if k(f) = 1, the mapping
f is said to be non-expansive. We say f is a contractive if for all x, y ∈ X such
that x ̸= y we have

d (f(x), f(y)) < d(x, y).

Let A be a subset of X and f : A → X. Given an ε > 0, any point a ∈ A with
d (a, f(a)) < ε is called an ε- fixed point for f .

Let A ⊂ X be a bounded and closed set. A continuous mapping
f : A → X is called a compact mapping if f(A) is a compact set.
We have the following

Fact 1 Let f : A → X be a compact mapping. If f has an ε-fixed point for every
ε > 0, then it has a fixed point.

Indeed, let xn be a
( 1

n

)
-fixed point for f , n = 1, 2, . . ., this is d (xn, f(xn)) < 1

n .
Since f is compact, we may assume that f(xn) → x0 ∈ f(A). It follows that
xn → x0 (because d (xn, x0) ⩽ d (xn, f(xn)) + d (f(xn), x0) → 0). Since A is
closed, it follows that x0 ∈ A. By the continuity of f , we have f(xn) → f(x0).
Since d (x0, f(x0)) ⩽ d (x0, f(xn)) + d (f(xn), f(x0)) → 0, f has a fixed point x0.

3. Some of the fixed point theorems of non-expansive mappings

Lemma 1 and Theorems 1-5 are classic results. We add proofs to them (except
Theorem 4) for the completeness of considerations and to highlight the connections
between them. For example, in the proof of Theorem 5, Theorem 3 is used.

Theorem 1
(Banach Contraction Principle) Let (X, ∥ · ∥) be a Banach space, and D ⊂ X
closed and f : D → D a contraction. Then f has a unique fixed point u ∈ D, and
fn(x0) → u for each x0 ∈ D

Proof. First we show that f can have at most one fixed point. Then we
construct a sequence which converges and we show that its limit is a fixed point
of f .

(a) Let u, u′ ∈ D. Suppose u and u′ are fixed points of f . Then ∥u − u′∥ =
∥f(u) − f(u′)∥ ⩽ q∥u − u′∥. Since q < 1, this implies that ∥u − u′∥ = 0, i.e.
u = u′.
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(b) Let x0 ∈ D be any element, and define an iterative sequence (xn) by putting
xn+1 = f(xn) (xn = fn(x0)) , n = 0, 1, 2, . . . Note that for a fixed p ∈ N and
any n ∈ N:

∥fn(x0) − fn+p(x0)∥ =∥fn(x0) − fn (fp(x0)) ∥ ⩽ qn∥x0 − fp(x0)∥ ⩽

⩽qn
(
∥x0 − f(x0)∥ + · · · + ∥fp−1(x0) − fp(x0)∥

)
⩽

⩽qn
(
1 + q + q2 + · · · + qp−1)

∥x0 − f(x0)∥ → 0

as n → ∞, because q < 1.

This shows that (xn) is a Cauchy sequence in D, and D is complete. Hence (xn)
must be convergent, say limn→∞ xn = u ∈ D. Since f is continuous, we have

u = lim
n→∞

xn+1 = lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
= f(u).

Thus u it is a (unique) fixed point.

Remark 1
The above proof can be simplified when additionally D is a bounded set; because
then

∥fn(x0) − fn+p(x0)∥ =∥fn(x0) − fn (fp(x0)) ∥ ⩽ qn∥x0 − fp(x0)∥ ⩽

⩽qndiam(D) → 0 as n → ∞.

From now on X will be a Banach space with the norm ∥ · ∥.

Lemma 1 If C is a closed, bounded and convex subset of X and if f : C → C is
a non-expansive, i.e. ∥f(x) − f(y)∥ ⩽ ∥x − y∥ for all x, y ∈ C, then for any ε > 0
there is a contraction fε : C → C such that for all x ∈ C ∥f(x) − fε(x)∥ < ε.

Proof. Let’s take any point z ∈ C. Take arbitrary ε > 0. Let q ∈ (0, 1) be a
real number such that q < ε

diamC and

fq(x) = qz + (1 − q)f(x), x ∈ C.

The mapping fq is a contraction on the set C: for any x, y ∈ C we have

∥fq(x) − fq(y)∥ = (1 − q)∥f(x) − f(y)∥ ⩽ (1 − q)∥x − y∥.

On the basis of Banach Contraction Principle there is such point xq ∈ C that
fq(xq) = xq. Also for any x ∈ C, we have

∥fq(x) − f(x)∥ = ∥qz + (1 − q)f(x) − f(x)∥ = q∥z − f(x)∥ ⩽ q diamC,

∥fq(x) − f(x)∥ <
ε

diamC
· diamC = ε (∗)
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Therefore from (∗) we have

∥xq − f (xq) ∥ = ∥fq (xq) − f (xq) ∥ ⩽ q diamC < ε. (∗∗)

Since a positive number ε is arbitrary, so

inf
x∈C

{∥x − f(x)∥} = 0.

In view of this result obtained from Lemma 1, we can formulate the following

Theorem 2
If C is a closed, bounded and convex subset of X, f : C → C is a non-expansive
mapping, then

inf
x∈C

∥x − f(x)∥ = 0.

The above result does not guarantee the existence of fixed point, and it shows that
there are points with can be considered as "arbitrarily little moved".

If C is additionally a compact set, so f is a compact mapping, then from the
inequality (∗∗) on the basis of Fact 1 we conclude that the mapping f has a fixed
point. This justifies the truth of the following theorem:

Theorem 3
If C is a compact and convex subset of (the Banach space) X, and f : C → C is
a non-expansive mapping, then f has a fixed point in the set C.

Theorem 4
Each contractive mapping f : [a, b] → [a, b] of the interval [a, b] ⊂ R into itself has
a unique fixed point x̂, and fn(x) → x̂ for each x ∈ [a, b].

Below we consider the space Rn with the Euclidean norm ∥ · ∥.
Let C be the Cartesian product of closed intervals [ai, bi] ⊂ R, i = 1, 2, . . . , n, i.e.
C = [a1, b1] × [a2, b2] × · · · × [an, bn].
The generalization of Theorem 4 is the following

Theorem 5
If f : C → C is a contractive mapping of the set C into itself, then f has a unique
fixed point u ∈ C, and fn(x0) → u for each x0 ∈ C.

Proof. Obviously (Rn, ∥ · ∥) is a Banach space and C is a compact subset
of Rn. Moreover, it is a convex set. Of course f is a non-expansive mapping.
Therefore on the basis of Theorem 3 f has a fixed point u ∈ C. We get the
uniqueness of the fixed point from the contradiction:

∥u − u′∥ = ∥f(u) − f(u′)∥ < ∥u − u′∥

obtained when f(u) = u ̸= u′ = f(u′).
Now let’s take any x0 ∈ C and let’s define ϱn = d (fn(x0), u) = ∥fn(x0)−u∥. The
sequence of non-negative numbers ϱn is non-increasing, and therefore convergent.
Let c = limn→∞ ϱn, so c ⩾ 0.
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Since C is a compact set, so the subsequence (fnk (x0)) of (fn(x0)) converges to
some y ∈ C. Therefore ∥y − u∥ = c, and putting ank

= ∥fnk (x0) − u∥ in the face
of a contradiction:

c = lim
k→∞

ank
= lim

k→∞
∥fnk (x0) − u∥ = lim

k→∞
∥f1+nk (x0) − u∥ = ∥f(y) − u∥ =

= ∥f(y) − f(u)∥ < ∥y − u∥ = c

obtained when c > 0, we have c = 0. Therefore y = u. Since all subsequences
(fnk (x0)) converge to u, we get fn(x0) → u as n → ∞.

Remark 2
Theorems 4 and 5 are versions of Edelstein’s fixed point theorem. The proof of
Theorem 4 as analogous to the proof of Theorem 5 has been omitted.

4. Applications

Example 1 Let us consider the sequence (xn) given by conditions:

xn+1 = 1 + 1
1 + xn

, x1 = 1.

We will show its convergence to
√

2. For this purpose, let f be a function defined on
the interval ⟨1, 2⟩ by the formula f(x) = 1 + 1

1+x . Since
f(1) = 1 1

2 , f(2) = 1 1
3 and f is a decreasing function, so f (⟨1, 2⟩) ⊂ ⟨1, 2⟩.

Let’s note that for any x, x′ ∈ ⟨1, 2⟩ we have

|f(x) − f(x′)| = |1 + x − 1 − x′|
(1 + x)(1 + x′) ⩽

|x − x′|
4 ,

so for any x, x′ ∈ ⟨1, 2⟩ such that x ̸= x′

|f(x) − f(x′)| < |x − x′|,

and f : ⟨1, 2⟩ → ⟨1, 2⟩ is a contractive mapping.
By Theorem 4, we conclude that there is only one number u ∈ ⟨1, 2⟩ such that

u = f(u). We also obtain the convergence the sequence (xn), xn = fn−1(1) to
√

2.

Example 2 Suppose that c > 0, x0 >
√

c and xn = 1
2

(
xn−1 + c

xn−1

)
for n ⩾ 1.

We will show that limn→∞ xn =
√

c justifying the correctness of calculations in
Heron’s algorithm (from the first century AD) defined by the above conditions. Let
us consider a function f(x) = 1

2
(
x + c

x

)
defined on interval C = ⟨

√
c, c⟩. Note

that f (
√

c) =
√

c and f(c) < c (since it is easy to see that f(x) < x for x >
√

c),
furthermore f is an increasing function. Therefore f(C) ⊂ C.

For each x ∈ C we have f ′(x) = 1
2 (1 − c

x2 ). Because 0 ⩽ f ′(x) < 1
2 for each

x ∈ C (comp. Remark 3), f : C → C is a contractive mapping.
Therefore by Theorem 4 there is a unique u ∈ C such that u = f(u). In

addition limn→∞ xn =
√

c.
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The above convergence can be obtained without using the fixed point theorems.
Lets us note that, since xn > 0 we have

x2
n = 1

4

(
xn−1 − c

xn−1

)2
+ c ⩾ c for n = 1, 2, 3, . . . ,

so xn ⩾
√

c for n = 0, 1, 2, 3, . . .
Whereas

xn+1 − xn = 1
2

(
c

xn
− xn

)
= c − x2

n

2xn
⩽ 0

Then there is a limit g = limn→∞ xn ⩾
√

c. The limit g satisfies the equation
g = 1

2

(
g + c

g

)
, therefore g =

√
c.

Remark 3
In the above example we additionally assumed that x0 ⩽ c. We can consider the
more general situation x0 ∈ [

√
c, ∞). Then considering f : [

√
c, ∞) → [

√
c, ∞) you

can see that f is a contraction (0 ⩽ f ′(x) < 1
2 for each x ⩾

√
c), so by Lagrange’s

theorem |f(x) − f(x′)| ⩽
⩽ 1

2 |x − x′| for every x, x′ ∈ C). By Banach Contraction Principle there is (one)
fixed point u and for any x0 >

√
c xn = fn(x0) →

√
c.

Example 3 In the paper (Barcz, 2019) there is an equality

φ =
√

1 +
√

1 +
√

1 + . . . (∗∗∗)

which can be obtained by the sequence (an) defined by the conditions

a0 =
√

1, an+1 =
√

1 + an,

noting that it has a limit a as an increasing and bounded sequence. This limit
satisfies the equation a2 = 1+a, of course a = 1+

√
5

2 = φ (because a > 0). Writing

this limit in the form
√

1 +
√

1 +
√

1 + . . ., we have the equality (∗∗∗).
Below we will present a way to obtain this equality using Banach Contraction
Principle (comp. (Barcz, 2020)). Let f(x) =

√
1 + x be a function defined on

C = ⟨0, 3⟩.
Since f(0) = 1, f(3) = 2 and f is an increasing function, so f(C) ⊂ C. For any
x, x′ ∈ C we have

|f(x) − f(x′)| = |
√

1 + x −
√

1 + x′| = |x − x′|√
1 + x +

√
1 + x′

⩽
1
2 |x − x′|.

Therefore f : C → C is a contraction, and by Banach Contraction Principle f has
a unique fixed point u =

√
1 + u, that is u = φ. Moreover,

an = fn
(√

1
)

→ φ, and by defining limn→∞ an =
√

1 +
√

1 +
√

1 + . . . we get
(∗∗∗).
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