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The mixtilinear excircle vs the mixtilinear incircle∗∗∗

Abstract. Many theorems concerning incircle of a random triangle can
be transferred by analogy onto it’s excircle. In the following paper we aim
to show analogies between mixtilinear incircle and mixtilinear excircle by
presenting variants of theorems proved in (Pater, Sochacki, 2020).

1. Introduction

Leon Bankoff divided triangles in the Euclidean space into rectilinear, mixti-
linear or curvilinear depending on whether all, some or none of the bounding lines
are straight (Bankoff, 1983). He derived a trigonometric formula for radius of the
circle tangent to two sides of a triangle and an arc of its circumcircle internally.
Hence the term mixtilinear incircle. However, it’s not the first time mathemati-
cians became aware of these, since mixtilinear circles date back to 19th century
Japan, where they were the main characters of a few San Gaku riddles.

Paul Yiu proved in 1999 via barycentric coordinates method what is written
below as theorem 12 for mixtilinear incircles (Yiu, 1999), which was further gen-
eralized by Stanley Rabinowitz, where he considered ’pseudo-incircles’ instead of
mixtilinear incircles (Rabinowitz, 2006). Later on, Yiu listed the barycentric co-
ordinates of points, lines and Apollonian circles associated with both mixtilinear
incircles and excircles (Yiu, 2023). In 2006 Nguyen and Salazar gave additional in-
sights on radical axes and radical centers of mixtilinear circles (Nguyen, Sochacki,
2006).

Every non-degenerate triangle ABC has exactly three mixtilinear excircles and
incircles we denote respectively as ωA, ωB , ωC and πA, πB , πC . ωA, πA are defined
as circles inscribed in the internal angle BAC tangent externally/internally to the
circumcircle of triangle ABC. Analogously we define the remaining circles. In the
following paper we consider a random triangle ABC and it’s associated points:
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Figure 1. Labels.

• I - incenter,

• O - circumcenter,

• A1 - center of arc BC opposite to point A,

• A2 - center of arc BC containing point A,

• EA - center of excircle tangent to side BC,

• SA - center of ωA,

• TA - touchpoint of ωA and circumcircle ABC,

• UA - center of πA,

• VA - touchpoint of πA and circumcircle ABC.
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Similarly, we define points B1, B2, C1, C2 and points E, S, T, U, V with subscripts
B or C.
Oriented and non-oriented angles are noted respectively with symbols ∡,∠. Fi-
nally, we adopted the notation XY → as the ray with initial point X passing
through Y .

2. Mixtilinear excircle on cartesian plane

Lemma 1. Let a circle ω lie on the plane at the same side of line AB as point
C. If ω is externally tangent to circumcircle ABC at X and line AB at Y , there
holds C2 ∈ Y X→ and

C2X · C2Y = C2B2.

Proof. There exists homothethy θ centered at X transforming ω into circumcircle
ABC. Tangent to circle ω is transformed by θ into tangent to circumcircle ABC
parallel to line AB lying on the same side of line AB as X, therefore passing
through C2. Hence θ(Y ) = C2 which concludes C2 ∈ Y X→.
Observe that ∡BC2X = −∡Y C2B and ∡BXC2 = ∡BAC2 = ∡C2BA = −∡Y BC2
imply △C2BX ∼ △C2Y B in the opposite orientation and C2X · C2Y = C2B2. □
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Figure 2. Lemma 1.

Theorem 1. If P, Q are points of tangency of ωA and lines AB, AC respectively,
then C2 ∈ PT →

A and B2 ∈ QT →
A .

Mixtilinear incircle version: If P, Q are points of tangency of πA and lines AB, AC
respectively, then C1 ∈ VAP → and C1 ∈ VAQ→. (see theorem 1.4 in (Pater,
Sochacki, 2020))
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Proof. The first property is direct conclusion from the lemma. The second is
analogous property when swapping vertices B and C. □

Theorem 2. (If P ∈ AB and Q ∈ AC are points of tangency of ωA with exten-
sions of triangle ABC sides, then EA is the midpoint of segment PQ.
Mixtilinear incircle version: If P ∈ AB and Q ∈ AC are points of tangency of πA

with sides of triangle ABC, then I is the midpoint of segment PQ. (see theorem
1.1 in (Pater, Sochacki, 2020))

Proof. By lemma we conclude that {P} = AB ∩ TAC2 and {Q} = AC ∩ B2TA.
Lines BB2, CC2 are external angle divisors of triangle ABC and intersect at EA.
Considering Pascal’s theorem in hexagon ABB2TAC2C we get collinearity of points
P, EA, Q. Because ωA is inscribed in internal angle BAC, line AEA is the bisector
of segment PQ, therefore EA is the midpoint of segment PQ. □
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Figure 3. Theorems 1.–5.

Lemma 2. Quadrilateral A2B2EAC2 is a parallelogram.
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Proof. Notice ∡IBEA = 90◦ = ∡ICEA, hence quadrilateral IBEAC is cyclic.
Moreover ∠A2BC = ∠A2CB = 90◦ − 1

2∠BAC = ∠BEAC. Lines A2B, A2C
are tangent to circumcircle BCEA and line EAA2 is a symmedian of the triangle
BCEA. From ∡BB2A2 = ∡BCA2 = ∡BEAC we derive A2B2 ∥ C2EA. Analo-
gously we prove A2C2 ∥ B2EA. □

Theorem 3. Points TA, A2 lie on EA-symedian of triangle BCEA.
Mixtilinear incircle version: Points VA, A2 lie on I-symedian of triangle BIC. (see
theorem 1.2 in (Pater, Sochacki, 2020))

Proof. From lemma 2 we deduce midpoint of segment B2C2 lies on segment A2EA.
Consider homothethy θ transforming ωA into circumcircle ABC. By lemma 1
θ(P ) = C2, θ(Q) = B2. Theorem 1 yields that EA is transformed by θ into
midpoint of B2C2. Therefore TA ∈ EAA2. □

Corollary 1. Point TA lies on circle with diameter A1EA.

Theorem 4. Let R ̸= TA be the intersection of line EATA with ωA. Then PR ∥
BEA, QR ∥ CEA and SAR ⊥ BC.
Mixtilinear incircle version: Let R ̸= TA be the intersection of line IVA with
πA. Then PR ∥ BI, QR ∥ CI and UAR ⊥ BC. (see corollary 1.9.1 in (Pater,
Sochacki, 2020))

Proof. Consider homothety θ centered at TA transforming ωA into circumcircle
ABC. By lemma 1 and theorem 3 we have θ(P ) = C2, θ(Q) = B2, θ(R) =
A2, θ(SA) = O. Hence PR ∥ C2A2. Lemma 2 yields C2A2 ∥ B2EA, therefore
PR ∥ BEA. Analogously we prove QR ∥ CEA. Moreover SAR ∥ A2O and
A2O ⊥ BC ends the proof.

Corollary 2. If D is the point of tangency of incircle with side BC, then points
A, D, R are collinear (homothety centered at A).
Mixtilinear incircle version: If D is the point of tangency of A-excircle with side
BC, then points A, D, R are collinear. (see theorem 2.17 in (Pater, Sochacki,
2020))

Theorem 5. If P ∈ AB and Q ∈ AC are points of tangency of ωA with extensions
of triangle ABC sides then quadruples of points (B, P, TA, EA), (C, Q, TA, EA) are
concyclic.
Mixtilinear incircle version: If P ∈ AB and Q ∈ AC are points of tangency of πA

with sides of triangle ABC then quadruples of points (B, P, VA, I), (C, Q, VA, I)
are concyclic. (see theorem 1.3 in (Pater, Sochacki, 2020))

Proof. Observe ∠C2BEA = 90◦ − 1
2∠BAC = ∠BEAC2 gives C2B = C2EA.

From lemma 1 we infer C2 ∈ PT →
A and C2P · C2TA = C2B2 = C2E2

A. Hence
△C2TAEA ∼ △C2EAP in the opposite orientation and ∡CEATA = ∡C2EATA =
∡EAPC2 = ∡QPTA = ∡CQTA, which proves concyclicity of points (B, P, TA, EA).
Proof for the second quadruple is analogous. □

Corollary 3. Points TA, C2 lie on P -symmedian of triangle BPEA.
Mixtilinear incircle version: Points VA, C1 lie on P -symmedian of triangle BPI.
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Proof. ∡EABC2 = ∡C2EAB = ∡EAPB. □

Theorem 6. Let P ∈ AB and Q ∈ AC be the points of tangency of ωA with
extensions of triangle ABC sides. Let M, N be the intersections of line BC with
lines PR, QR respectively. Then quadrilateral MPQN is inscribed in circle cen-
tered at I.
Mixtilinear incircle version: Let P ∈ AB and Q ∈ AC be the points of tangency of
πA with sides of triangle ABC. Let M, N be the intersections of line BC with lines
PR, QR respectively. Then quadrilateral MPQN is inscribed in circle centered at
EA. (see theorem 1.10 in (Pater, Sochacki, 2020))

Proof. From theorem 4 we infer MP ∥ BEA, therefore ∠PMB = ∠EABC =
90◦ − 1

2∠ABC = 90◦ − 1
2∠MBP which gives MB = BP . Therefore line BI is

perpendicular to MP and MI = PI. Analogously we can prove NI = QI. Finally
AI ⊥ PQ gives PI = QI. □
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Figure 4. Theorems 6.–11.

Theorem 7. Let P ∈ AB and Q ∈ AC be the points of tangency of ωA with
extensions of triangle ABC sides. Then lines PQ, BC, TAA1 are either concurrent
or parallel.
Mixtilinear incircle version: Let P ∈ AB and Q ∈ AC be the points of tangency of
πA with sides of triangle ABC. Then lines PQ, BC, VAA1 are either concurrent
or parallel. (see theorem 1.6 in (Pater, Sochacki, 2020))
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Proof. Lines AA1, CC2 intersect at EA and by theorem 1 lines TAA1, BC intersect
at P . Consider Pascal’s theorem in hexagon TAA1ABCC2: lines AB, TAC2, PEA

are either concurrent or parallel. □

We also give other proof.

Proof. Equality ∡IBEA = 90◦ = ∡EACI implies that the segment IEA is a
diameter of the circumcircle BCEA. This fact conjoined with corollary 1 proves
line PQ is the radical axis of circles with diameters IEA, A1EA. By radical axis
theorem applied to circumcircles A1TAEA, BCEA and ABC we have proved the
required. □

Theorem 8. Let D be the tangency of ABC incircle with side BC and F be the
intersection of ATA with incircle closer to the vertex A. Then DF ∥ RTA.

Proof. Consider homothethy θ centered at A transforming incircle into ωA. Then
θ(I) = SA and line parallel to BC passing through I is transformed into line
parallel to BC passing through SA. Therefore theorem 4 yields θ(D) = R and
segment DF is transformed by θ into segment RTA giving DF ∥ RTA. □

Theorem 9. Pentagon WAFID is inscribed in circle with diameter WI.

Proof. Note perpendicular lines AA1 ⊥ WA2 and WD ⊥ A1A2. Hence ∡AWD =
∡AA1A2. Theorem 8 gives ∡AA1A2 = ∡ATAA2 = ∡ATAR = ∡AFD. Therefore
quadrilateral WAFD is cyclic. Observe ∡WDI = 90◦ = ∡WAI, so points A, D
lie on circle with diameter WI. □

Corollary 4. ∡BAD = ∡BAI − ∡DAI = ∡IAC − ∡IAF = ∡TAAC

Theorem 10. △BAD ∼ △TAAC in the same orientation.
Mixtilinear incircle version: If EA-centered excircle is tangent to the side BC at
point G then △BAG ∼ △VAAC in the same orientation. (see theorem 2.16 in
(Pater, Sochacki, 2020))

Proof. Note that inscribed angles equality ∡ABD = ∡ATAC with corollary above
is equivalent to the desired similarity. □

Theorem 11. Point I is the orthocenter of triangle WA2EA.

Proof. By theorem 9 ∡WFI = ∡WDI = 90◦ and DI = FI, hence WI ⊥ DF .
Theorem 8 yields WI ⊥ TAR. With theorem 3 we get WI ⊥ A2EA. Internal and
external bisector of given angle are perpendicular, therefore EAI ⊥ WA2. □

Theorem 12. Lines ATA, BTB , CTC are concurrent in center of negative scale
homothety transforming incircle into ABC circumcircle.
Mixtilinear incircle version: Lines AVA, BVB , CVC are concurrent in center of pos-
itive scale homothethy transforming incircle into ABC circumcircle. (see theorem
2.19 in (Pater, Sochacki, 2020))
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Proof. Consider homothety θ1 centered at A transforming incircle into ωA with
positive scale and homothethy θ2 centered at TA transforming ωA into circumcircle
ABC with negative scale. Then homothethy θ3 centered at some point X on
segment IO transforming incircle onto circumcircle ABC with negative scale is
a composition of homotheties θ1 and θ2, therefore points A, X, TA are collinear.
Analogously we prove X ∈ BTB and X ∈ CTC . □

3. Lengths

Throughout this section we assume a, b, c as the lengths of sides BC, CA, AB
respectively.

Theorem 13. Distances from TA to vertices are given by formulas:

ATA = 2bc ·
√

a

(b + c − a) (a(a + b + c) − 2(b − c)2) ,

BTA = c(a + b − c) ·
√

a

(b + c − a) (a(a + b + c) − 2(b − c)2) ,

CTA = b(a + c − b) ·
√

a

(b + c − a) (a(a + b + c) − 2(b − c)2) .

Mixtilinear incircle version:

AVA = 2bc ·
√

a

(a + b + c) (a(b + c − a) + 2(b − c)2) ,

BVA = c(a + c − b) ·
√

a

(a + b + c) (a(b + c − a) + 2(b − c)2) ,

CVA = b(a + b − c) ·
√

a

(a + b + c) (a(b + c − a) + 2(b − c)2) .

(see theorem 4.1 in (Pater, Sochacki, 2020))

Proof. By Stewart’s theorem

AD2 = AC2 · BD + AB2 · CD

BC
− BD · CD =

=
c2 · 1

2 (a + b − c) + b2 · 1
2 (a + c − b)

a
− (a + c − b)(a + b − c)

4 =

=
(b + c − a)

(
a(a + b + c) − 2(b − c)2)

4a
.

Theorem 10 yields

ATA = AB · AC

AD
= 2bc ·

√
a

(b + c − a) (a(a + b + c) − 2(b − c)2) ,
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CTA = AC

AD
· BD = b(a + c − b) ·

√
a

(b + c − a) (a(a + b + c) − 2(b − c)2) .

Analogously we get the formula for BTA by swapping variables b and c in the
formula for CTA :

BTA = c(a + b − c) ·
√

a

(b + c − a) (a(a + b + c) − 2(b − c)2) .

□

Theorem 14. Let P ∈ AB be the point of tangency of ωA with extension of
triangle ABC side. Radius length of ωA is equal to

PSA = 2bc

b + c − a
·

√
(a + b − c)(a − b + c)
(a + b + c)(b + c − a)

and

ASA = 4bc

b + c − a
·

√
bc

(a + b + c)(b + c − a) , AP = 2bc

b + c − a
.

Mixtilinear incircle version: Let P ∈ AB be the point of tangency of πA with side
of triangle ABC. Radius length of πA is equal to

PUA = 2bc

a + b + c
·

√
(a + b − c)(a − b + c)
(a + b + c)(b + c − a)

and

AUA = 4bc

a + b + c
·

√
bc

(a + b + c)(b + c − a) , AP = 2bc

a + b + c
.

(see corollary 1.1.1 and theorem 4.3 in (Pater, Sochacki, 2020))

Proof. Let Z be the point of tangency of A-excircle with line AB. Then AZ =
1
2 (a + b + c) and △AZEA ∼ △AEAP , so

AP = AE2
A

AZ
.

In the right triangle AZEA we have

ZEA = 2[ABC]
b + c − a

=
√

(a + b + c)(a + b − c)(a − b + c)
2
√

b + c − a

and

AE2
A = AZ2+ZE2

A = 1
4(a+b+c)2+(a + b + c)(a + b − c)(a − b + c)

4(b + c − a) = bc·a + b + c

b + c − a

therefore
AP = 2bc

b + c − a
.



[22] Mikołaj Pater, Robert Sochacki

Observe ZEA ∥ PSA gives

ASA = AP · AEA

AZ
= AE3

A

AZ2 = 4bc
√

bc

(b + c − a)
√

(a + b + c)(b + c − a)
,

as well as

PSA = ZEA · AP

AZ
=

2bc
√

(a + b − c)(a − b + c)
(b + c − a)

√
(a + b + c)(b + c − a)

.

□

4. Coordinates

In the following section we set the coordinates on Argand plane as in theo-
rem below and we treat each point as a complex number. More insights on this
approach can be found in the book (Pater, Sochacki, 2020).

Theorem 15. There exist complex numbers a, b, c such that |a| = |b| = |c| = 1
and

A = a2, B = b2, C = c2, A1 = −bc, B1 = −ca, C1 = −ab.

(see theorem 2.13 in (Pater, Sochacki, 2020))

Corollary 5. I = −(ab + bc + ca) as the orthocenter of triangle A1B1C1, EA =
ab − bc + ca as the reflection of I with respect to point A1 and A2 = bc.

Theorem 16.
TA = a · ab − 2bc + ca

2a − b − c

Mixtilinear incircle version:

VA = −a · ab + 2bc + ca

2a + b + c

(see theorem 2.14 in (Pater, Sochacki, 2020))

Proof. Since TA lies on circumcircle ABC we have TA · TA = |TA|2 = 1. By
theorem 3 points TA, EA, A2 are collinear, hence

TA − A2

EA − A2
=

(
TA − A2

EA − A2

)
,

TA − bc

ab − 2bc + ca
=

(
TA − bc

ab − 2bc + ca

)
=

1
TA

− 1
bc

1
ab − 2

bc + 1
ca

= TA − bc

2a − b − c
· a

TA
,

TA = a · ab − 2bc + ca

2a − b − c
.

□
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Theorem 17. Let P ∈ AB and Q ∈ AC be the points of tangency of ωA with
extensions of triangle ABC sides. Then

P = a(ab + ca − 2bc) + 2b2(c − a)
c − b

, Q = a(ab + ca − 2bc) + 2c2(b − a)
b − c

.

Mixtilinear incircle version: Let P ∈ AB and Q ∈ AC be the points of tangency
of πA with sides of triangle ABC. Then

P = a(ab + ca + 2bc) + 2b2(a + c)
c − b

, Q = a(ab + ca + 2bc) + 2c2(a + b)
b − c

.

(see corollary 2.14 in (Pater, Sochacki, 2020))

Proof. From theorem 1 point P is the intersection of lines containing unit circle
chords AB and TAC2. Therefore

P = A · B · (TA + C2) − TA · C2 · (A + B)
A · B − TA · C2

=

=
a2b2

(
a · ab−2bc+ca

2a−b−c + ab
)

− ab · a · ab−2bc+ca
2a−b−c

(
a2 + b2)

a2b2 − ab · a · ab−2bc+ca
2a−b−c

=

= a(ab + ca − 2bc) + 2b2(c − a)
c − b

.

Coordinates for Q are identical as for P except for swapping a and b. □

Theorem 18.

SA =
(

ab − 2bc + ca

b − c

)2

Mixtilinear incircle version:

UA =
(

ab + 2bc + ca

b − c

)2

(see theorem 2.14 in (Pater, Sochacki, 2020))

Proof. Points A, A1, S are collinear, therefore:

SA + bc

a2 + bc
=

(
SA + bc

a2 + bc

)
= bc · SA + 1

a2 + bc
· a2,

SA = SA + bc − a2

a2bc

By theorem 2 P is the foot of SA on line AB. Thus

2P = SA + A + B − A · B · SA,

2 · a(ab + ca − 2bc) + 2b2(c − a)
c − b

= SA + a2 + b2 − a2b2 · SA + bc − a2

a2bc
,
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SA =
2ac(ab + ca − 2bc) + 4b2c(c − a) − (c − b)

(
(a2 + b2)c − b(bc − a2)

)
(c − b)2 ,

SA = (ab − 2bc + ca)2

(c − b)2 .

□
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