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The mixtilinear excircle vs the mixtilinear incircle*

Abstract. Many theorems concerning incircle of a random triangle can
be transferred by analogy onto it’s excircle. In the following paper we aim
to show analogies between mixtilinear incircle and mixtilinear excircle by
presenting variants of theorems proved in (Pater, Sochacki, 2020).

1. Introduction

Leon Bankoff divided triangles in the Euclidean space into rectilinear, mixti-
linear or curvilinear depending on whether all, some or none of the bounding lines
are straight (Bankoff, 1983). He derived a trigonometric formula for radius of the
circle tangent to two sides of a triangle and an arc of its circumcircle internally.
Hence the term mixtilinear incircle. However, it’s not the first time mathemati-
cians became aware of these, since mixtilinear circles date back to 19th century
Japan, where they were the main characters of a few San Gaku riddles.

Paul Yiu proved in 1999 via barycentric coordinates method what is written
below as theorem 12 for mixtilinear incircles (Yiu, 1999), which was further gen-
eralized by Stanley Rabinowitz, where he considered ’pseudo-incircles’ instead of
mixtilinear incircles (Rabinowitz, 2006). Later on, Yiu listed the barycentric co-
ordinates of points, lines and Apollonian circles associated with both mixtilinear
incircles and excircles (Yiu, 2023). In 2006 Nguyen and Salazar gave additional in-
sights on radical axes and radical centers of mixtilinear circles (Nguyen, Sochacki,
2006).

Every non-degenerate triangle ABC' has exactly three mixtilinear excircles and
incircles we denote respectively as wa,wp,wc and T4, g, Tc. wa, T4 are defined
as circles inscribed in the internal angle BAC tangent externally/internally to the
circumcircle of triangle ABC. Analogously we define the remaining circles. In the
following paper we consider a random triangle ABC' and it’s associated points:
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Figure 1. Labels.

e [ - incenter,

e O - circumcenter,

e Ay - center of arc BC' opposite to point A,

e A, - center of arc BC' containing point A,

e F4 - center of excircle tangent to side BC,

e S - center of wy,

e T4 - touchpoint of wy and circumcircle ABC,
e Uy - center of my,

e V4 - touchpoint of m4 and circumcircle ABC.
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Similarly, we define points By, Bs, Cy,Cs and points E, S, T, U,V with subscripts
Bor C.

Oriented and non-oriented angles are noted respectively with symbols £, Z. Fi-
nally, we adopted the notation XY ™ as the ray with initial point X passing
through Y.

2. Mixtilinear excircle on cartesian plane

Lemma 1. Let a circle w lie on the plane at the same side of line AB as point
C. If w is externally tangent to circumcircle ABC at X and line AB atY, there
holds Co € YX 7 and

CoX - CoY = O, B2

Proof. There exists homothethy 6 centered at X transforming w into circumcircle
ABC. Tangent to circle w is transformed by # into tangent to circumcircle ABC
parallel to line AB lying on the same side of line AB as X, therefore passing
through Cs. Hence 6(Y) = Cy which concludes Cy € YX .

Observe that L BCy X = —LYCoB and £ BXCy = ABACy = £C3BA = —LY BCy
imply ACyBX ~ AC,Y B in the opposite orientation and CoX - CoY = Co,B%2.0

A

C

Figure 2. Lemma 1.

Theorem 1. If P,Q are points of tangency of wa and lines AB, AC' respectively,
then Cy € PT" and By € QT .

Mixtilinear incircle version: If P,Q are points of tangency of ma and lines AB, AC
respectively, then C; € VaP~ and Cy € VaQ™. (see theorem 1.4 in (Pater,
Sochacki, 2020))
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Proof. The first property is direct conclusion from the lemma. The second is
analogous property when swapping vertices B and C. (]

Theorem 2. (If P € AB and Q € AC are points of tangency of wa with exten-
sions of triangle ABC' sides, then E 4 is the midpoint of segment PQ.
Mixtilinear incircle version: If P € AB and Q € AC are points of tangency of wa
with sides of triangle ABC, then I is the midpoint of segment PQ. (see theorem
1.1 in (Pater, Sochacki, 2020))

Proof. By lemma we conclude that {P} = ABNTyCs and {Q} = AC N ByTy.
Lines BBsy, C'Cy are external angle divisors of triangle ABC and intersect at F 4.
Considering Pascal’s theorem in hexagon AB BT 4C5C we get collinearity of points
P, E4, Q. Because wy is inscribed in internal angle BAC, line AE 4 is the bisector
of segment P(Q), therefore F4 is the midpoint of segment PQ). O

R

Figure 3. Theorems 1.-5.

Lemma 2. Quadrilateral Ay BosEACy is a parallelogram.
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Proof. Notice LIBE, = 90° = LICFE 4, hence quadrilateral IBE4C is cyclic.
Moreover LA;BC = £ZA;CB = 90° — %ABAC = /BFE,C. Lines AsB, A5C
are tangent to circumcircle BCE,4 and line E4 As is a symmedian of the triangle
BCE4. From £{BBsAs = ABCAs = ABE,C we derive A3Bs || CoFE 4. Analo-
gously we prove A>Cs || BoE 4. O

Theorem 3. Points Ta, As lie on Es-symedian of triangle BCE 4.
Mixtilinear incircle version: Points Va, As lie on I-symedian of triangle BIC. (see
theorem 1.2 in (Pater, Sochacki, 2020))

Proof. From lemma 2 we deduce midpoint of segment BoC lies on segment AsF 4.
Consider homothethy 6 transforming w4 into circumcircle ABC. By lemma 1
0(P) = (3,0(Q) = Bs. Theorem 1 yields that E4 is transformed by 6 into
midpoint of BoCs. Therefore Ty € E4A,. O

Corollary 1. Point Ty lies on circle with diameter A1 E 4.

Theorem 4. Let R # T4 be the intersection of line EoaTa with wa. Then PR ||
BEA,QR || CEA and SAR 1 BC.

Mixtilinear incircle version: Let R # T4 be the intersection of line IV, with
wa. Then PR || BI,QR || CI and UsR L BC. (see corollary 1.9.1 in (Pater,
Sochacki, 2020))

Proof. Consider homothety 6 centered at T4 transforming w, into circumcircle
ABC. By lemma 1 and theorem 3 we have 0(P) = C2,6(Q) = B2,0(R) =
As,0(Sa) = O. Hence PR || C3As. Lemma 2 yields CyAs || BaE4, therefore
PR || BE4. Analogously we prove QR || CE4. Moreover SyR || A20 and
A0 1 BC ends the proof.

Corollary 2. If D is the point of tangency of incircle with side BC, then points
A, D, R are collinear (homothety centered at A).

Mixtilinear incircle version: If D is the point of tangency of A-excircle with side
BC, then points A,D,R are collinear. (see theorem 2.17 in (Pater, Sochacki,
2020))

Theorem 5. If P € AB and Q € AC are points of tangency of wa with extensions
of triangle ABC' sides then quadruples of points (B, P,Ta, E4),(C,Q,Ta,E4) are
concyclic.

Mixtilinear incircle version: If P € AB and Q € AC are points of tangency of 4
with sides of triangle ABC' then quadruples of points (B, P,Va,I),(C,Q,Va,I)
are concyclic. (see theorem 1.3 in (Pater, Sochacki, 2020))

Proof. Observe ZC3BE4 = 90° — $/BAC = /BEsC; gives CoB = C3E,.
From lemma 1 we infer Cy € PT,” and CoP - CoTy = CyB? = CQEE\. Hence
ANCSTAE 4 ~ ANCoE 4P in the opposite orientation and LCEAT4 = £CoEATa =
LEAPCy = £LQPT4 = LCQT 4, which proves concyclicity of points (B, P, T4, E4).
Proof for the second quadruple is analogous. O

Corollary 3. Points Ta,Cs lie on P-symmedian of triangle BPE 4.
Mixtilinear incircle version: Points V4, Cy lie on P-symmedian of triangle BPI.
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Proof. AEABCy = £CoEsB = {EAPB. O

Theorem 6. Let P € AB and Q € AC be the points of tangency of wa with
extensions of triangle ABC' sides. Let M, N be the intersections of line BC with
lines PR, QR respectively. Then quadrilateral M PQN is inscribed in circle cen-
tered at 1.

Mixtilinear incircle version: Let P € AB and QQ € AC' be the points of tangency of
wa with sides of triangle ABC. Let M, N be the intersections of line BC' with lines
PR, QR respectively. Then quadrilateral M PQN is inscribed in circle centered at
E4. (see theorem 1.10 in (Pater, Sochacki, 2020))

Proof. From theorem 4 we infer M P || BE,, therefore /PMB = /E,BC =
90° — %ZABC = 90° — %ZMBP which gives M B = BP. Therefore line BI is
perpendicular to M P and MI = PI. Analogously we can prove NI = QI. Finally
Al | PQ gives PI = QI. O

Figure 4. Theorems 6.-11.

Theorem 7. Let P € AB and Q € AC be the points of tangency of wa with
extensions of triangle ABC sides. Then lines PQ, BC,Ty Ay are either concurrent
or parallel.

Mixtilinear incircle version: Let P € AB and Q € AC be the points of tangency of
wa with sides of triangle ABC. Then lines PQ, BC,VAA;, are either concurrent
or parallel. (see theorem 1.6 in (Pater, Sochacki, 2020))
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Proof. Lines AA;, CCs intersect at 4 and by theorem 1 lines Ty Ay, BC intersect
at P. Consider Pascal’s theorem in hexagon T4 A1 ABCCy: lines AB,T4Co, PE 4
are either concurrent or parallel. O

We also give other proof.

Proof. Equality L{IBE, = 90° = LFE,CI implies that the segment IF 4 is a
diameter of the circumcircle BCE4. This fact conjoined with corollary 1 proves
line PQ is the radical axis of circles with diameters IF4, A; E4. By radical axis
theorem applied to circumcircles A1T4F4, BCE4 and ABC we have proved the
required. O

Theorem 8. Let D be the tangency of ABC incircle with side BC and F be the
intersection of AT 4 with incircle closer to the vertexr A. Then DF' || RT4.

Proof. Consider homothethy 6 centered at A transforming incircle into wa. Then
6(I) = S4 and line parallel to BC passing through I is transformed into line
parallel to BC' passing through S4. Therefore theorem 4 yields (D) = R and
segment DF is transformed by 6 into segment RT4 giving DF' || RT 4. O

Theorem 9. Pentagon WAFID is inscribed in circle with diameter W 1.

Proof. Note perpendicular lines AA; L WAy and WD L Ay As. Hence LAW D =
L AA1Ay. Theorem 8 gives LAA1As = LAT Ay = LATAR = LAFD. Therefore
quadrilateral WAF D is cyclic. Observe LW DI = 90° = AW AI, so points A, D
lie on circle with diameter W1. O

Corollary 4. {BAD = £BAI — ADAI = LIAC — LIAF = LT, AC

Theorem 10. ABAD ~ AT, AC in the same orientation.

Mixtilinear incircle version: If E4-centered excircle is tangent to the side BC' at
point G then ABAG ~ AV4AC in the same orientation. (see theorem 2.16 in
(Pater, Sochacki, 2020))

Proof. Note that inscribed angles equality L ABD = £ AT 4C with corollary above
is equivalent to the desired similarity. O

Theorem 11. Point I is the orthocenter of triangle W Ao E 4.

Proof. By theorem 9 L{WFI = AWDI = 90° and DI = FI, hence WI 1 DF.
Theorem 8 yields WI 1 Ty R. With theorem 3 we get W1 | AsFE 4. Internal and
external bisector of given angle are perpendicular, therefore E41 | W A,. O

Theorem 12. Lines ATy, BTp,CT¢c are concurrent in center of negative scale
homothety transforming incircle into ABC' circumcircle.

Mixtilinear incircle version: Lines AVa, BVg, CVe are concurrent in center of pos-
itive scale homothethy transforming incircle into ABC' circumcircle. (see theorem
2.19 in (Pater, Sochacki, 2020))
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Proof. Consider homothety 6; centered at A transforming incircle into wy with
positive scale and homothethy 65 centered at T'4 transforming w4 into circumcircle
ABC' with negative scale. Then homothethy 635 centered at some point X on
segment IO transforming incircle onto circumcircle ABC with negative scale is
a composition of homotheties 67 and 65, therefore points A, X, T4 are collinear.
Analogously we prove X € BT and X € CTg. O

3. Lengths

Throughout this section we assume a, b, ¢ as the lengths of sides BC,CA, AB
respectively.

Theorem 13. Distances from T4 to vertices are given by formulas:

ATA:ch-\/(b+c_a)(a(a+b+c)—2(5—0)2)’

a

(b+c—a)(ala+b+c)—2(b—c)?)’

BTA—c(a+bc)~\/

(b+c—a)(ala+b+c)—2(b—c)?)

C’TA—b(a+cb)~\/

Mixtilinear incircle version:

AVA:2bc-\/(a+b+c)(a(b+c—a)+2(b_c)2)’

(a+b+c)(alb+c—a)+2(b—c)?)’

BVAzc(a+c—b)-\/

a
—bla+b—c)- .
CVa=blatb-c) \/(a+b+c) (a(b+c—a)+2(b—1c)?)
(see theorem 4.1 in (Pater, Sochacki, 2020))

Proof. By Stewart’s theorem

_ AC?-BD+AB?-CD

2 _ . =
AD BC BD-CD
A gla+b—c)+ b J(a+c—D) _(atc—blat+tb—c) _
= - 1 =
_(b+c—a) (ala+b+c)—2(b—c)?)
= T .

Theorem 10 yields

ATA:AD:2bc-\/(b+ca)(a(a+b+c)2(b6)2)’
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AC ¢
AD-BD:b(a—i—c—b)'\/(bJrca)(a(a+b+6)2(b0)2).

Analogously we get the formula for BTy by swapping variables b and ¢ in the
formula for CTy :

CTy =

(b+c—a)(ala+b+c)—2(b—c)?)

BTA:c(cH—b—c)-\/

O

Theorem 14. Let P € AB be the point of tangency of wa with extension of
triangle ABC' side. Radius length of wa is equal to

PS4 2be \/(a+bc)(ab+c)

T btc—a (a+b+c)(b+c—a)
and
4bc be 2bc
ASa = b+ca.\/(a+b+c)(b+ca)’ AP = b+c—a

Mixtilinear incircle version: Let P € AB be the point of tangency of ma with side
of triangle ABC. Radius length of wa is equal to

2bc (a+b—c)la—b+c)
PU4 = ‘
a+b+e (a+b+c)(b+c—a)

and

4bc be 2bc
AUy = . , AP= ————.
AT a¥brfe \/(a+b+c)(b+c—a) atb+c
(see corollary 1.1.1 and theorem 4.3 in (Pater, Sochacki, 2020))

Proof. Let Z be the point of tangency of A-excircle with line AB. Then AZ =
1(a+b+c)and AAZEA ~ AAE4P, so

A2
AZ

AP =

In the right triangle AZE 4 we have

2B, — 2[ABC] _ Vie+b+e)(a+b—c)la—b+c)

btc—a 2Vb+c—a
and
1 (a+b+c)la+b—c)la—b+c) a+b+c
AE% = AZ?+ZE3 = —(a+b+c)? = be-
A aka 4(a—|——|—c)+ 4(b+c—a) “btc—a

therefore
2bc

AP = ———,
b+c—a
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Observe ZE 4 || PS4 gives

3
ASA:AP.AEA:AEQZ 4bev/be ’
Az AZ®  (b+c—a)\/(a+b+c)(b+c—a)
as well as
2b b— —b
PSA = ZE, - AP cy/(a+b—c)la—b+c)

AZ  (bt+c—a)/la+b+c)b+c—a)

4. Coordinates

In the following section we set the coordinates on Argand plane as in theo-
rem below and we treat each point as a complex number. More insights on this
approach can be found in the book (Pater, Sochacki, 2020).

Theorem 15. There exist complex numbers a,b,c such that |a| = [b] = |¢| = 1
and

A=a?,B=0b%,C=c* A = —bc,By = —ca,C; = —ab.
(see theorem 2.13 in (Pater, Sochacki, 2020))

Corollary 5. I = —(ab+ bc + ca) as the orthocenter of triangle Ay B1C1, Ex =
ab — bc+ ca as the reflection of I with respect to point A1 and As = be.

Theorem 16.
Ty=a. ab — 2bc + ca
2a —b—c
Mixtilinear incircle version:
Vie —a. ab 4+ 2bc + ca
2a +b+c

(see theorem 2.1/ in (Pater, Sochacki, 2020))

Proof. Since T4 lies on circumcircle ABC we have T4 - = |Tal? = 1. By
theorem 3 points T4, E 4, Ao are collinear, hence

Ta — Az _(TA_A2>

Eys— Ay \Es— A
Ta—bc T4 — be B ﬁ—g Ty — be a
ab—2bc+ca  \ab— 2bc+ ca 7E—— I " 2%—b—c T4’
ab — 2bc + ca
Ty =g — "7
A= 2a —b—c
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Theorem 17. Let P € AB and Q € AC be the points of tangency of wa with

extensions of triangle ABC' sides. Then

a(ab + ca — 2bc) + 2b(c — a)
c—b

0= a(ab + ca — 2bc) + 2¢%(b — a)

P:
b—c

Mixtilinear incircle version: Let P € AB and Q € AC be the points of tangency
of ma with sides of triangle ABC. Then

a(ab + ca + 2bc) + 2b%(a + ¢)
c—b

0= a(ab + ca + 2bc) + 2¢%(a + b)
e b—c '

P =

(see corollary 2.14 in (Pater, Sochacki, 2020))

Proof. From theorem 1 point P is the intersection of lines containing unit circle
chords AB and T4C5. Therefore

_A-B-(Ta+Cs) =Ty -Cy-(A+ B)

P

A-B—Ty -Co
a’b? (a . 7“%;2};;"5“ + ab) —ab-a- 7a%;%b§f§” (a? +b?)
= b—2b =
a?b? —ab - q - 4-2bctca
_a(ab + ca — 2bc) + 2b*(c — a)
B c—b '
Coordinates for @) are identical as for P except for swapping a and b. O
Theorem 18. )
(ab — 2bc + ca)
Sp=—7——
b—c

Mixtilinear incircle version:

Uy — (ab+2bc—|—ca>2
b—c

(see theorem 2.1/ in (Pater, Sochacki, 2020))

Proof. Points A, A1, S are collinear, therefore:

)

Sa+bc  (Sa+be _bc-ﬁ—i—l o2
a?+bc  \a2+4+bc)  a2+be

—  Sp+bec—a?
Sa = a?bc

By theorem 2 P is the foot of S4 on line AB. Thus
2P=S5S1+A+B—A-B-Sa,

a(ab + ca — 2bc) + 2b(c — a)
c—b

S+ be — a?

2
a?bc

=S4+ a®+b* - a®b?
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_ 2ac(ab + ca — 2bc) + 4b%c(c — a) — (¢ — b) ((a® 4 b*)c — b(bc — a?))

Sa = (c—b)2 ’
g, — (ab — 2bc + ca)?
! (c —b)?
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