Annales Universitatis Paedagogicae Cracoviensis

Studia ad Didacticam Mathematicae Pertinentia 14(2022)
ISSN 2080-9751
DOI 10.24917/20809751.14.2

Mikołaj Pater, Robert Sochacki

The mixtilinear excircle vs the mixtilinear incircle*

Abstract

Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).

1. Introduction

Leon Bankoff divided triangles in the Euclidean space into rectilinear, mixtilinear or curvilinear depending on whether all, some or none of the bounding lines are straight (Bankoff, 1983). He derived a trigonometric formula for radius of the circle tangent to two sides of a triangle and an arc of its circumcircle internally. Hence the term mixtilinear incircle. However, it's not the first time mathematicians became aware of these, since mixtilinear circles date back to 19th century Japan, where they were the main characters of a few San Gaku riddles.

Paul Yiu proved in 1999 via barycentric coordinates method what is written below as theorem 12 for mixtilinear incircles (Yiu, 1999), which was further generalized by Stanley Rabinowitz, where he considered 'pseudo-incircles' instead of mixtilinear incircles (Rabinowitz, 2006). Later on, Yiu listed the barycentric coordinates of points, lines and Apollonian circles associated with both mixtilinear incircles and excircles (Yiu, 2023). In 2006 Nguyen and Salazar gave additional insights on radical axes and radical centers of mixtilinear circles (Nguyen, Sochacki, 2006).

Every non-degenerate triangle $A B C$ has exactly three mixtilinear excircles and incircles we denote respectively as $\omega_{A}, \omega_{B}, \omega_{C}$ and $\pi_{A}, \pi_{B}, \pi_{C} . \omega_{A}, \pi_{A}$ are defined as circles inscribed in the internal angle $B A C$ tangent externally/internally to the circumcircle of triangle $A B C$. Analogously we define the remaining circles. In the following paper we consider a random triangle $A B C$ and it's associated points:

[^0]

Figure 1. Labels.

- I - incenter,
- O - circumcenter,
- A_{1} - center of arc $B C$ opposite to point A,
- A_{2} - center of arc $B C$ containing point A,
- E_{A} - center of excircle tangent to side $B C$,
- S_{A} - center of ω_{A},
- T_{A} - touchpoint of ω_{A} and circumcircle $A B C$,
- U_{A} - center of π_{A},
- V_{A} - touchpoint of π_{A} and circumcircle $A B C$.

Similarly, we define points $B_{1}, B_{2}, C_{1}, C_{2}$ and points E, S, T, U, V with subscripts B or C.
Oriented and non-oriented angles are noted respectively with symbols \measuredangle, \angle. Finally, we adopted the notation $X Y^{\rightarrow}$ as the ray with initial point X passing through Y.

2. Mixtilinear excircle on cartesian plane

Lemma 1. Let a circle ω lie on the plane at the same side of line $A B$ as point C. If ω is externally tangent to circumcircle $A B C$ at X and line $A B$ at Y, there holds $C_{2} \in Y X^{\rightarrow}$ and

$$
C_{2} X \cdot C_{2} Y=C_{2} B^{2}
$$

Proof. There exists homothethy θ centered at X transforming ω into circumcircle $A B C$. Tangent to circle ω is transformed by θ into tangent to circumcircle $A B C$ parallel to line $A B$ lying on the same side of line $A B$ as X, therefore passing through C_{2}. Hence $\theta(Y)=C_{2}$ which concludes $C_{2} \in Y X^{\rightarrow}$.
Observe that $\measuredangle B C_{2} X=-\measuredangle Y C_{2} B$ and $\measuredangle B X C_{2}=\measuredangle B A C_{2}=\measuredangle C_{2} B A=-\measuredangle Y B C_{2}$ imply $\triangle C_{2} B X \sim \triangle C_{2} Y B$ in the opposite orientation and $C_{2} X \cdot C_{2} Y=C_{2} B^{2}$.

Figure 2. Lemma 1.
Theorem 1. If P, Q are points of tangency of ω_{A} and lines $A B, A C$ respectively, then $C_{2} \in P T_{A}$ and $B_{2} \in Q T_{A}$.
Mixtilinear incircle version: If P, Q are points of tangency of π_{A} and lines $A B, A C$ respectively, then $C_{1} \in V_{A} P^{\rightarrow}$ and $C_{1} \in V_{A} Q^{\rightarrow}$. (see theorem 1.4 in (Pater, Sochacki, 2020))

Proof. The first property is direct conclusion from the lemma. The second is analogous property when swapping vertices B and C.

Theorem 2. (If $P \in A B$ and $Q \in A C$ are points of tangency of ω_{A} with extensions of triangle $A B C$ sides, then E_{A} is the midpoint of segment $P Q$.
Mixtilinear incircle version: If $P \in A B$ and $Q \in A C$ are points of tangency of π_{A} with sides of triangle $A B C$, then I is the midpoint of segment $P Q$. (see theorem 1.1 in (Pater, Sochacki, 2020))

Proof. By lemma we conclude that $\{P\}=A B \cap T_{A} C_{2}$ and $\{Q\}=A C \cap B_{2} T_{A}$. Lines $B B_{2}, C C_{2}$ are external angle divisors of triangle $A B C$ and intersect at E_{A}. Considering Pascal's theorem in hexagon $A B B_{2} T_{A} C_{2} C$ we get collinearity of points P, E_{A}, Q. Because ω_{A} is inscribed in internal angle $B A C$, line $A E_{A}$ is the bisector of segment $P Q$, therefore E_{A} is the midpoint of segment $P Q$.

Figure 3. Theorems 1.-5.
Lemma 2. Quadrilateral $A_{2} B_{2} E_{A} C_{2}$ is a parallelogram.

Proof. Notice $\measuredangle I B E_{A}=90^{\circ}=\measuredangle I C E_{A}$, hence quadrilateral $I B E_{A} C$ is cyclic. Moreover $\angle A_{2} B C=\angle A_{2} C B=90^{\circ}-\frac{1}{2} \angle B A C=\angle B E_{A} C$. Lines $A_{2} B, A_{2} C$ are tangent to circumcircle $B C E_{A}$ and line $E_{A} A_{2}$ is a symmedian of the triangle $B C E_{A}$. From $\measuredangle B B_{2} A_{2}=\measuredangle B C A_{2}=\measuredangle B E_{A} C$ we derive $A_{2} B_{2} \| C_{2} E_{A}$. Analogously we prove $A_{2} C_{2} \| B_{2} E_{A}$.

Theorem 3. Points T_{A}, A_{2} lie on E_{A}-symedian of triangle $B C E_{A}$.
Mixtilinear incircle version: Points V_{A}, A_{2} lie on I-symedian of triangle BIC. (see theorem 1.2 in (Pater, Sochacki, 2020))

Proof. From lemma 2 we deduce midpoint of segment $B_{2} C_{2}$ lies on segment $A_{2} E_{A}$. Consider homothethy θ transforming ω_{A} into circumcircle $A B C$. By lemma 1 $\theta(P)=C_{2}, \theta(Q)=B_{2}$. Theorem 1 yields that E_{A} is transformed by θ into midpoint of $B_{2} C_{2}$. Therefore $T_{A} \in E_{A} A_{2}$.

Corollary 1. Point T_{A} lies on circle with diameter $A_{1} E_{A}$.
Theorem 4. Let $R \neq T_{A}$ be the intersection of line $E_{A} T_{A}$ with ω_{A}. Then $P R \|$ $B E_{A}, Q R \| C E_{A}$ and $S_{A} R \perp B C$.
Mixtilinear incircle version: Let $R \neq T_{A}$ be the intersection of line $I V_{A}$ with π_{A}. Then $P R\|B I, Q R\| C I$ and $U_{A} R \perp B C$. (see corollary 1.9.1 in (Pater, Sochacki, 2020))

Proof. Consider homothety θ centered at T_{A} transforming ω_{A} into circumcircle $A B C$. By lemma 1 and theorem 3 we have $\theta(P)=C_{2}, \theta(Q)=B_{2}, \theta(R)=$ $A_{2}, \theta\left(S_{A}\right)=O$. Hence $P R \| C_{2} A_{2}$. Lemma 2 yields $C_{2} A_{2} \| B_{2} E_{A}$, therefore $P R \| B E_{A}$. Analogously we prove $Q R \| C E_{A}$. Moreover $S_{A} R \| A_{2} O$ and $A_{2} O \perp B C$ ends the proof.

Corollary 2. If D is the point of tangency of incircle with side $B C$, then points A, D, R are collinear (homothety centered at A).
Mixtilinear incircle version: If D is the point of tangency of A-excircle with side $B C$, then points A, D, R are collinear. (see theorem 2.17 in (Pater, Sochacki, 2020))

Theorem 5. If $P \in A B$ and $Q \in A C$ are points of tangency of ω_{A} with extensions of triangle $A B C$ sides then quadruples of points $\left(B, P, T_{A}, E_{A}\right),\left(C, Q, T_{A}, E_{A}\right)$ are concyclic.
Mixtilinear incircle version: If $P \in A B$ and $Q \in A C$ are points of tangency of π_{A} with sides of triangle $A B C$ then quadruples of points $\left(B, P, V_{A}, I\right),\left(C, Q, V_{A}, I\right)$ are concyclic. (see theorem 1.3 in (Pater, Sochacki, 2020))

Proof. Observe $\angle C_{2} B E_{A}=90^{\circ}-\frac{1}{2} \angle B A C=\angle B E_{A} C_{2}$ gives $C_{2} B=C_{2} E_{A}$. From lemma 1 we infer $C_{2} \in P T_{A}$ and $C_{2} P \cdot C_{2} T_{A}=C_{2} B^{2}=C_{2} E_{A}^{2}$. Hence $\triangle C_{2} T_{A} E_{A} \sim \triangle C_{2} E_{A} P$ in the opposite orientation and $\measuredangle C E_{A} T_{A}=\measuredangle C_{2} E_{A} T_{A}=$ $\measuredangle E_{A} P C_{2}=\measuredangle Q P T_{A}=\measuredangle C Q T_{A}$, which proves concyclicity of points $\left(B, P, T_{A}, E_{A}\right)$. Proof for the second quadruple is analogous.

Corollary 3. Points T_{A}, C_{2} lie on P-symmedian of triangle $B P E_{A}$.
Mixtilinear incircle version: Points V_{A}, C_{1} lie on P-symmedian of triangle BPI.

Proof. $\measuredangle E_{A} B C_{2}=\measuredangle C_{2} E_{A} B=\measuredangle E_{A} P B$.
Theorem 6. Let $P \in A B$ and $Q \in A C$ be the points of tangency of ω_{A} with extensions of triangle $A B C$ sides. Let M, N be the intersections of line $B C$ with lines $P R, Q R$ respectively. Then quadrilateral $M P Q N$ is inscribed in circle centered at I.
Mixtilinear incircle version: Let $P \in A B$ and $Q \in A C$ be the points of tangency of π_{A} with sides of triangle $A B C$. Let M, N be the intersections of line $B C$ with lines $P R, Q R$ respectively. Then quadrilateral $M P Q N$ is inscribed in circle centered at E_{A}. (see theorem 1.10 in (Pater, Sochacki, 2020))

Proof. From theorem 4 we infer $M P \| B E_{A}$, therefore $\angle P M B=\angle E_{A} B C=$ $90^{\circ}-\frac{1}{2} \angle A B C=90^{\circ}-\frac{1}{2} \angle M B P$ which gives $M B=B P$. Therefore line $B I$ is perpendicular to $M P$ and $M I=P I$. Analogously we can prove $N I=Q I$. Finally $A I \perp P Q$ gives $P I=Q I$.

Figure 4. Theorems 6.-11.
Theorem 7. Let $P \in A B$ and $Q \in A C$ be the points of tangency of ω_{A} with extensions of triangle $A B C$ sides. Then lines $P Q, B C, T_{A} A_{1}$ are either concurrent or parallel.
Mixtilinear incircle version: Let $P \in A B$ and $Q \in A C$ be the points of tangency of π_{A} with sides of triangle $A B C$. Then lines $P Q, B C, V_{A} A_{1}$ are either concurrent or parallel. (see theorem 1.6 in (Pater, Sochacki, 2020))

Proof. Lines $A A_{1}, C C_{2}$ intersect at E_{A} and by theorem 1 lines $T_{A} A_{1}, B C$ intersect at P. Consider Pascal's theorem in hexagon $T_{A} A_{1} A B C C_{2}$: lines $A B, T_{A} C_{2}, P E_{A}$ are either concurrent or parallel.

We also give other proof.

Proof. Equality $\measuredangle I B E_{A}=90^{\circ}=\measuredangle E_{A} C I$ implies that the segment $I E_{A}$ is a diameter of the circumcircle $B C E_{A}$. This fact conjoined with corollary 1 proves line $P Q$ is the radical axis of circles with diameters $I E_{A}, A_{1} E_{A}$. By radical axis theorem applied to circumcircles $A_{1} T_{A} E_{A}, B C E_{A}$ and $A B C$ we have proved the required.

Theorem 8. Let D be the tangency of $A B C$ incircle with side $B C$ and F be the intersection of $A T_{A}$ with incircle closer to the vertex A. Then $D F \| R T_{A}$.

Proof. Consider homothethy θ centered at A transforming incircle into ω_{A}. Then $\theta(I)=S_{A}$ and line parallel to $B C$ passing through I is transformed into line parallel to $B C$ passing through S_{A}. Therefore theorem 4 yields $\theta(D)=R$ and segment $D F$ is transformed by θ into segment $R T_{A}$ giving $D F \| R T_{A}$.

Theorem 9. Pentagon WAFID is inscribed in circle with diameter $W I$.
Proof. Note perpendicular lines $A A_{1} \perp W A_{2}$ and $W D \perp A_{1} A_{2}$. Hence $\measuredangle A W D=$ $\measuredangle A A_{1} A_{2}$. Theorem 8 gives $\measuredangle A A_{1} A_{2}=\measuredangle A T_{A} A_{2}=\measuredangle A T_{A} R=\measuredangle A F D$. Therefore quadrilateral $W A F D$ is cyclic. Observe $\measuredangle W D I=90^{\circ}=\measuredangle W A I$, so points A, D lie on circle with diameter $W I$.

Corollary 4. $\measuredangle B A D=\measuredangle B A I-\measuredangle D A I=\measuredangle I A C-\measuredangle I A F=\measuredangle T_{A} A C$
Theorem 10. $\triangle B A D \sim \triangle T_{A} A C$ in the same orientation.
Mixtilinear incircle version: If E_{A}-centered excircle is tangent to the side $B C$ at point G then $\triangle B A G \sim \triangle V_{A} A C$ in the same orientation. (see theorem 2.16 in (Pater, Sochacki, 2020))

Proof. Note that inscribed angles equality $\measuredangle A B D=\measuredangle A T_{A} C$ with corollary above is equivalent to the desired similarity.

Theorem 11. Point I is the orthocenter of triangle $W A_{2} E_{A}$.
Proof. By theorem $9 \measuredangle W F I=\measuredangle W D I=90^{\circ}$ and $D I=F I$, hence $W I \perp D F$. Theorem 8 yields $W I \perp T_{A} R$. With theorem 3 we get $W I \perp A_{2} E_{A}$. Internal and external bisector of given angle are perpendicular, therefore $E_{A} I \perp W A_{2}$.

Theorem 12. Lines $A T_{A}, B T_{B}, C T_{C}$ are concurrent in center of negative scale homothety transforming incircle into $A B C$ circumcircle.
Mixtilinear incircle version: Lines $A V_{A}, B V_{B}, C V_{C}$ are concurrent in center of positive scale homothethy transforming incircle into $A B C$ circumcircle. (see theorem 2.19 in (Pater, Sochacki, 2020))

Proof. Consider homothety θ_{1} centered at A transforming incircle into ω_{A} with positive scale and homothethy θ_{2} centered at T_{A} transforming ω_{A} into circumcircle $A B C$ with negative scale. Then homothethy θ_{3} centered at some point X on segment $I O$ transforming incircle onto circumcircle $A B C$ with negative scale is a composition of homotheties θ_{1} and θ_{2}, therefore points A, X, T_{A} are collinear. Analogously we prove $X \in B T_{B}$ and $X \in C T_{C}$.

3. Lengths

Throughout this section we assume a, b, c as the lengths of sides $B C, C A, A B$ respectively.
Theorem 13. Distances from T_{A} to vertices are given by formulas:

$$
\begin{gathered}
A T_{A}=2 b c \cdot \sqrt{\frac{a}{(b+c-a)\left(a(a+b+c)-2(b-c)^{2}\right)}}, \\
B T_{A}=c(a+b-c) \cdot \sqrt{\frac{a}{(b+c-a)\left(a(a+b+c)-2(b-c)^{2}\right)}}, \\
C T_{A}=b(a+c-b) \cdot \sqrt{\frac{a}{(b+c-a)\left(a(a+b+c)-2(b-c)^{2}\right)}}
\end{gathered}
$$

Mixtilinear incircle version:

$$
\begin{gathered}
A V_{A}=2 b c \cdot \sqrt{\frac{a}{(a+b+c)\left(a(b+c-a)+2(b-c)^{2}\right)}}, \\
B V_{A}=c(a+c-b) \cdot \sqrt{\frac{a}{(a+b+c)\left(a(b+c-a)+2(b-c)^{2}\right)}}, \\
C V_{A}=b(a+b-c) \cdot \sqrt{\frac{a}{(a+b+c)\left(a(b+c-a)+2(b-c)^{2}\right)}}
\end{gathered}
$$

(see theorem 4.1 in (Pater, Sochacki, 2020))
Proof. By Stewart's theorem

$$
\begin{gathered}
A D^{2}=\frac{A C^{2} \cdot B D+A B^{2} \cdot C D}{B C}-B D \cdot C D= \\
=\frac{c^{2} \cdot \frac{1}{2}(a+b-c)+b^{2} \cdot \frac{1}{2}(a+c-b)}{a}-\frac{(a+c-b)(a+b-c)}{4}= \\
=\frac{(b+c-a)\left(a(a+b+c)-2(b-c)^{2}\right)}{4 a}
\end{gathered}
$$

Theorem 10 yields

$$
A T_{A}=\frac{A B \cdot A C}{A D}=2 b c \cdot \sqrt{\frac{a}{(b+c-a)\left(a(a+b+c)-2(b-c)^{2}\right)}},
$$

The mixtilinear excircle vs the mixtilinear incircle

$$
C T_{A}=\frac{A C}{A D} \cdot B D=b(a+c-b) \cdot \sqrt{\frac{a}{(b+c-a)\left(a(a+b+c)-2(b-c)^{2}\right)}} .
$$

Analogously we get the formula for $B T_{A}$ by swapping variables b and c in the formula for $C T_{A}$:

$$
B T_{A}=c(a+b-c) \cdot \sqrt{\frac{a}{(b+c-a)\left(a(a+b+c)-2(b-c)^{2}\right)}} .
$$

Theorem 14. Let $P \in A B$ be the point of tangency of ω_{A} with extension of triangle $A B C$ side. Radius length of ω_{A} is equal to

$$
P S_{A}=\frac{2 b c}{b+c-a} \cdot \sqrt{\frac{(a+b-c)(a-b+c)}{(a+b+c)(b+c-a)}}
$$

and

$$
A S_{A}=\frac{4 b c}{b+c-a} \cdot \sqrt{\frac{b c}{(a+b+c)(b+c-a)}}, A P=\frac{2 b c}{b+c-a}
$$

Mixtilinear incircle version: Let $P \in A B$ be the point of tangency of π_{A} with side of triangle $A B C$. Radius length of π_{A} is equal to

$$
P U_{A}=\frac{2 b c}{a+b+c} \cdot \sqrt{\frac{(a+b-c)(a-b+c)}{(a+b+c)(b+c-a)}}
$$

and

$$
A U_{A}=\frac{4 b c}{a+b+c} \cdot \sqrt{\frac{b c}{(a+b+c)(b+c-a)}}, A P=\frac{2 b c}{a+b+c} .
$$

(see corollary 1.1.1 and theorem 4.3 in (Pater, Sochacki, 2020))
Proof. Let Z be the point of tangency of A-excircle with line $A B$. Then $A Z=$ $\frac{1}{2}(a+b+c)$ and $\triangle A Z E_{A} \sim \triangle A E_{A} P$, so

$$
A P=\frac{A E_{A}^{2}}{A Z} .
$$

In the right triangle $A Z E_{A}$ we have

$$
Z E_{A}=\frac{2[A B C]}{b+c-a}=\frac{\sqrt{(a+b+c)(a+b-c)(a-b+c)}}{2 \sqrt{b+c-a}}
$$

and
$A E_{A}^{2}=A Z^{2}+Z E_{A}^{2}=\frac{1}{4}(a+b+c)^{2}+\frac{(a+b+c)(a+b-c)(a-b+c)}{4(b+c-a)}=b c \cdot \frac{a+b+c}{b+c-a}$
therefore

$$
A P=\frac{2 b c}{b+c-a} .
$$

Observe $Z E_{A} \| P S_{A}$ gives

$$
A S_{A}=A P \cdot \frac{A E_{A}}{A Z}=\frac{A E_{A}^{3}}{A Z^{2}}=\frac{4 b c \sqrt{b c}}{(b+c-a) \sqrt{(a+b+c)(b+c-a)}}
$$

as well as

$$
P S_{A}=Z E_{A} \cdot \frac{A P}{A Z}=\frac{2 b c \sqrt{(a+b-c)(a-b+c)}}{(b+c-a) \sqrt{(a+b+c)(b+c-a)}}
$$

4. Coordinates

In the following section we set the coordinates on Argand plane as in theorem below and we treat each point as a complex number. More insights on this approach can be found in the book (Pater, Sochacki, 2020).

Theorem 15. There exist complex numbers a, b, c such that $|a|=|b|=|c|=1$ and

$$
A=a^{2}, B=b^{2}, C=c^{2}, A_{1}=-b c, B_{1}=-c a, C_{1}=-a b
$$

(see theorem 2.13 in (Pater, Sochacki, 2020))
Corollary 5. $I=-(a b+b c+c a)$ as the orthocenter of triangle $A_{1} B_{1} C_{1}, E_{A}=$ $a b-b c+c a$ as the reflection of I with respect to point A_{1} and $A_{2}=b c$.

Theorem 16.

$$
T_{A}=a \cdot \frac{a b-2 b c+c a}{2 a-b-c}
$$

Mixtilinear incircle version:

$$
V_{A}=-a \cdot \frac{a b+2 b c+c a}{2 a+b+c}
$$

(see theorem 2.14 in (Pater, Sochacki, 2020))
Proof. Since T_{A} lies on circumcircle $A B C$ we have $T_{A} \cdot \overline{T_{A}}=\left|T_{A}\right|^{2}=1$. By theorem 3 points T_{A}, E_{A}, A_{2} are collinear, hence

$$
\begin{gathered}
\frac{T_{A}-A_{2}}{E_{A}-A_{2}}=\overline{\left(\frac{T_{A}-A_{2}}{E_{A}-A_{2}}\right)} \\
\frac{T_{A}-b c}{a b-2 b c+c a}=\overline{\left(\frac{T_{A}-b c}{a b-2 b c+c a}\right)}=\frac{\frac{1}{T_{A}}-\frac{1}{b c}}{\frac{1}{a b}-\frac{2}{b c}+\frac{1}{c a}}=\frac{T_{A}-b c}{2 a-b-c} \cdot \frac{a}{T_{A}}, \\
T_{A}=a \cdot \frac{a b-2 b c+c a}{2 a-b-c}
\end{gathered}
$$

Theorem 17. Let $P \in A B$ and $Q \in A C$ be the points of tangency of ω_{A} with extensions of triangle $A B C$ sides. Then

$$
P=\frac{a(a b+c a-2 b c)+2 b^{2}(c-a)}{c-b}, Q=\frac{a(a b+c a-2 b c)+2 c^{2}(b-a)}{b-c} .
$$

Mixtilinear incircle version: Let $P \in A B$ and $Q \in A C$ be the points of tangency of π_{A} with sides of triangle $A B C$. Then

$$
P=\frac{a(a b+c a+2 b c)+2 b^{2}(a+c)}{c-b}, Q=\frac{a(a b+c a+2 b c)+2 c^{2}(a+b)}{b-c} .
$$

(see corollary 2.14 in (Pater, Sochacki, 2020))
Proof. From theorem 1 point P is the intersection of lines containing unit circle chords $A B$ and $T_{A} C_{2}$. Therefore

$$
\begin{gathered}
P=\frac{A \cdot B \cdot\left(T_{A}+C_{2}\right)-T_{A} \cdot C_{2} \cdot(A+B)}{A \cdot B-T_{A} \cdot C_{2}}= \\
=\frac{a^{2} b^{2}\left(a \cdot \frac{a b-2 b c+c a}{2 a-b-c}+a b\right)-a b \cdot a \cdot \frac{a b-2 b c+c a}{2 a-b-c}\left(a^{2}+b^{2}\right)}{a^{2} b^{2}-a b \cdot a \cdot \frac{a b-2 b c+c a}{2 a-b-c}}= \\
=\frac{a(a b+c a-2 b c)+2 b^{2}(c-a)}{c-b} .
\end{gathered}
$$

Coordinates for Q are identical as for P except for swapping a and b.

Theorem 18.

$$
S_{A}=\left(\frac{a b-2 b c+c a}{b-c}\right)^{2}
$$

Mixtilinear incircle version:

$$
U_{A}=\left(\frac{a b+2 b c+c a}{b-c}\right)^{2}
$$

(see theorem 2.14 in (Pater, Sochacki, 2020))
Proof. Points A, A_{1}, S are collinear, therefore:

$$
\begin{gathered}
\frac{S_{A}+b c}{a^{2}+b c}=\overline{\left(\frac{S_{A}+b c}{a^{2}+b c}\right)}=\frac{b c \cdot \overline{S_{A}}+1}{a^{2}+b c} \cdot a^{2} \\
\overline{S_{A}}=\frac{S_{A}+b c-a^{2}}{a^{2} b c}
\end{gathered}
$$

By theorem $2 P$ is the foot of S_{A} on line $A B$. Thus

$$
\begin{gathered}
2 P=S_{A}+A+B-A \cdot B \cdot \overline{S_{A}} \\
2 \cdot \frac{a(a b+c a-2 b c)+2 b^{2}(c-a)}{c-b}=S_{A}+a^{2}+b^{2}-a^{2} b^{2} \cdot \frac{S_{A}+b c-a^{2}}{a^{2} b c}
\end{gathered}
$$

$$
\begin{gathered}
S_{A}=\frac{2 a c(a b+c a-2 b c)+4 b^{2} c(c-a)-(c-b)\left(\left(a^{2}+b^{2}\right) c-b\left(b c-a^{2}\right)\right)}{(c-b)^{2}} \\
S_{A}=\frac{(a b-2 b c+c a)^{2}}{(c-b)^{2}}
\end{gathered}
$$

5. Acknowledgements

The authors are deeply grateful to the reviewers for valuable comments that contributed to the final version of this paper.

References

Bankoff, L.: 1983, A Mixtilinear Adventure, Crux Mathematicorum, 9, 2-7.
Nguyen, K. L., Salazar, J. C.: 2006, On mixtilinear incircles and excircles, Forum Geometricorum, 6, 1-16.

Pater, M., Sochacki, R.: 2020, Wokót geometrii trójkata, Wydawnictwo Uniwersytetu Opolskiego, Opole.

Rabinowitz, S.: 2006, Pseudo-incircles, Forum Geometricorum, 6 107-115.
Yiu, P.: 1999, Mixtilinear incircles, Amer. Math. Monthly, 106, 952-955.
Yiu, P.: The Mixtilinear Circles and Points on the OI Line, available http:// math.fau.edu/yiu/PSRM2015/yiu/Backup050815/FGPreparation/olderfiles/ mixtilinear031218.pdfonline (28 May 2023).

Mikotaj Pater
Medical University of Warsaw, Poland
e-mail: mikolajpater@gmail.com
Robert Sochacki
Opole University, Poland
e-mail: rsochacki@uni.opole.pl

[^0]: *2020 Mathematics Subject Classification: 51M04, 51N20
 Keywords and phrases: mixtilinear circle, mixtilinear excircle, mixtilinear incircle

